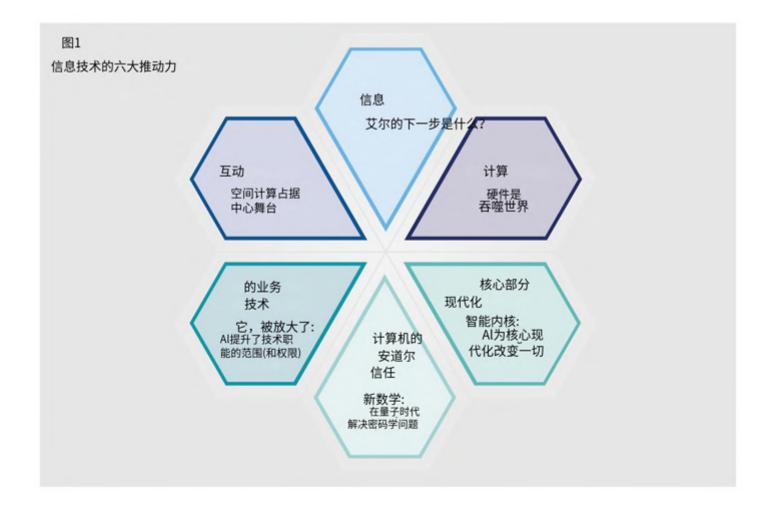
2025年技术趋势

在德勤(Deloitte)的第16份年度科技趋势 报告中,人工智能是几乎所有趋势的共同 主线。展望未来,它将成为我们一切工作 的一部分。

^{德勤。} 洞察力


- 02..行动纲要
- _{介绍} 05...艾尔无处不在:像魔术一样,但有算法
- ^{互动} 09...空间计算占据中心舞台
- 信息 17...艾尔的下一步是什么?
- ^{计算} 27...硬件正在吞噬世界
- 技术商业 37...它,被放大了:人工智能提升了技术功能的范围
- 网络和信任 45...新数学:在量子时代解决密码学
- 核心现代化 53...智能核心:人工智能改变核心现代化的一切
- ^{结论} 60...广度是新的深度:有意交集的力量

行动纲要

德勤的旗舰技术报告《技术趋势》(Tech Trends)探 作为日常商业和个人生活的电力。随着我们在德勤(讨了三种提升力量(交互、信息和计算)和三种基础力 Deloitte)首席技术官办公室的团队对《2025年技术趋 量(技术业务、网络和信任以及核心现代化)的趋势, 这些都是我们宏观技术力量框架的一部分(图1)。《 2025年科技趋势》是我们第16次绕太阳旅行,它预 将无处不在,它将成为我们所做一切的看不见的底层 示了人工智能将成为基础的未来

势》进行最后的润色,我们意识到,人工智能几乎是 每一种趋势的共同主线。我们预计,未来,人工智能 结构的一部分,我们最终甚至不会知道它的存在。

介绍

艾尔无处不在:像魔术一样,但有算法

生殖人工智能仍然是今年的流行语,但2025年技术 趋势——事实上,技术的未来——不仅仅是人工智能 。今年的报告揭示了人工智能在多大程度上融入了 我们的生活。我们最终会认为它是理所当然的,并 像看待HTTP或电一样看待它:我们只是希望它能工 作。人工智能将在后台安静地运行,优化我们城市 的交通,个性化我们的医疗保健,或在教育中创建 适应性强和可访问的学习路径。

我们不会主动使用它;我们将简单地体验一个世界 ,在这个世界中,它让一切工作得更智能、更快、 更直观——就像魔术一样,但基于算法。《2025年 科技趋势》的六个章节反映了这一新兴现实。

互动

空间计算占据中心舞台

空间计算继续激发企业的兴趣,因为它能够打破信息孤岛,为员工和客户创造更自然的信息交互方式。我们已经看到企业通过高级模拟等用例获得成功,这些用例允许组织测试不同的场景,以了解各种条件将如何影响他们的运营。随着对有效管理空间数据的更大关注,组织可以推动更先进的应用。在未来几年,人工智能的进步可能会带来无缝的空间计算体验和改进的互操作性,最终使人工智能代理能够预测和主动满足用户的需求。

信息

艾尔的下一步是什么?

为了利用围绕生成式人工智能的蓬勃发展,许多组织已经采用了大型语言模型(LLM),这是许多用例的最佳选择。但是有些人已经开始向前看了。尽管LLM具有普遍适用性,但它可能不是最

满足所有组织需求的有效选择。企业现在正在考虑 小型语言模型和开源选项,以便能够在更小、更精 确的数据集上训练LLM。加上多模态模型和基于人 工智能的模拟,这些新型人工智能正在构建一个未 来,企业可以为每项任务找到正确的人工智能类型 。这包括不仅回答问题而且完成任务的人工智能。 在未来几年,对执行的关注可能会迎来一个代理人 工智能的新时代,为消费者和组织提供能够改变我 们工作和生活方式的副驾驶。

计算

硬件正在吞噬世界

在多年的软件统治之后,硬件重新成为焦点。由于 人工智能需要专门的计算资源,公司正在转向先进 的芯片来支持人工智能工作负载。此外,嵌入人智能芯片的个人电脑准备通过提供对离线人工智能型的访问,同时"面向未来"的技术基础设施, 降低云计算成本,并增强数据隐私,来增强知识 作者的能力。尽管人工智能增加的能源需求带在创识, 可持续发展的挑战,但能源和效率的进步正在包 工智能硬件变得更容易获得。展望未来,人工智能 继续集成到设备中可能会彻底改变物联网和机器人 技术,通过更智能、更自主的设备改变医疗保健等 行业。

技术商业

它,被放大了:铝提升了范围 科技人才(和汇款)

经过多年向精益IT和一切即服务产品的发展,人工智能正在引发从虚拟化和紧缩预算的转变。长期以来,IT部门一直被视为整个企业数字化转型的灯塔,现在它正在进行人工智能转型。由于生成性人工智能在编写代码、测试软件和增强技术人才方面的适用性,具有前瞻性思维的技术领导者正在利用当前这个千载难逢的机会

跨五大支柱转变IT的机会:基础设施、工程、财 核心企业系统代表了组织如何运营和利用技术 务运营、人才和创新。随着传统和生成式人工智 获得竞争优势的重大转变。这种转变是关于日 能能力的增长,技术交付的每个阶段都可以看到 常任务的自动化,以及从根本上重新思考和重 从负责人到参与人的转变。这一举措最终可能会 新设计流程,使其更加智能、高效和可预测。 让IT回到一种新形式的精益IT,利用公民开发者 由于集成的复杂性、技术和技能方面的战略投 和人工智能驱动的自动化。 资以及确保平稳运营的强大治理框架,这需要

网络和信任

新数学:在量子时代解决密码学

核心企业系统代表了组织如何运营和利用技术 获得竞争优势的重大转变。这种转变是关于日 常任务的自动化,以及从根本上重新思考和重 新设计流程,使其更加智能、高效和可预测。 由于集成的复杂性、技术和技能方面的战略投 资以及确保平稳运营的强大治理框架,这需要 仔细规划。但是要小心自动化悖论:系统越复杂 人类工作者就变得越重要。将人工智能添加 到核心系统中可能会简化用户体验,但这将使 它们在架构层面上变得更加复杂。深厚的技术 技能对于管理核心系统中的人工智能仍然至关 重要。

结论

广度是新的深度:有意交集的力量

组织长期以来依赖于创新驱动的新收入流、通 过并购创造的协同效应以及战略合作伙伴关系 。但越来越多的细分和专业化已经让位于技术 和行业的有意交叉。例如,当两种技术交叉时 ,它们通常是互补的,但是它们也可以相互增 强,以便两种技术最终都加速它们的增长潜力 。类似地,当公司通过有目的地在看似不同的 行业合作来扩大市场份额时,新的机会就会出 现。

核心现代化

智能核心:人工智能改变核心 现代化的一切

核心系统提供商在人工智能方面投入了大量资金 ,围绕人工智能驱动或人工智能优先的模式重建 他们的产品和能力。将人工智能集成到

艾尔无处不在:像魔术一样 ,但有算法

《2025年科技趋势》揭示了人工智能正在如何融入我们的生活——让一切工作更智能、更快速、更直观

凯利·拉斯科维奇

在生成式人工智能宣称自己是每个人的流行语宾果卡上的免费空间的两年后,你想象技术的未来只是简单的...更多AI。不过,这只是故事的一部分。我们认为,技术的未来与其说是更多的人工智能,不如说是无处不在

艾。我们预计,展望未来,人工智能将从根本上 融入我们的生活,它无处不在,如此基础,以至 于我们不再注意到它。

以电为例。你最后一次真正想到电子是什么时候? 我们不再对灯亮了感到惊奇——我们只是希望它们 能工作。

HTTP也是如此,这个看不见的线程将互联网连接 在一起。我们每天都在使用它,但我敢打赌,我们 大多数人在相当长的一段时间里都没有想过(更不用 说说出)"超文本"这个词了。

人工智能最终将遵循类似的道路,变得如此无处 不在,以至于它将成为我们所做一切的看不见的 底层结构的一部分,我们最终甚至不会知道它的 存在。它将在背景中悄然运行,优化我们城市的 交通,使我们的医疗保健个性化,并在教育领域 创造适应性强、易于使用的学习途径。我们不会 "使用"AI。我们将会体验到一个世界,在这个 世界里,事情变得更聪明、更快、更直观——就 像魔术一样,但是基于算法。我们希望它能为企 业和个人成长奠定基础,同时也能随着时间的推 移自我调整和维持。 这种人工智能的未来在今年的《技术趋势报告》 中表现得最为明显,该报告每年都探索信息技术 六大宏观力量的新兴趋势(执行摘要中的图1)。

我们记录的趋势中有一半是支撑创新和增长的提升力量——交互、信息和计算。另一半——技术、 网络和信任以及核心现代化的业务基础——帮助企业在成长的同时无缝运营。

随着我们的团队对今年的报告进行最后的润色,我们意识到人工智能的升华和扩散已经在进行中。不是"唯一趋势",也不是"所有趋势",人工智能是支撑几乎所有趋势的脚手架和共同主线。(对于那些在家里密切关注的人来说,《新数学:在量子时代解决密码术》(The new math:Solving cryptography in a age of quantum)——关于另一项改变游戏规则的技术量子计算的网络安全影响——是唯一一部人工智能没有发挥基础性作用的作品。然而在幕后,人工智能的进步正在加速量子的进步。)

- 空间计算占据中心舞台:未来的人工智能进步 将增强空间计算模拟,最终导致与人工智能 代理集成的无缝空间计算体验。
- AI的下一步是什么?:随着人工智能的发展, 企业对大型语言模型的关注正在让位于小型语 言模型、多模态模型、基于人工智能的模拟以 及可以执行离散任务的代理。

- 硬件正在吞噬世界:在软件占据主导地位多年 智能对计算芯片的影响及其与最终用户设备、 物联网和机器人的集成。
- 它被放大了:人工智能提升了技术人才的范围: 人工智能在编写代码、测试软件和增加技术人 才方面的适用性正在改变IT,并引发了从虚拟 化和紧缩预算的转变。
- 智能核心:人工智能改变一切 核心现代化:核心系统提供商在人工智能方面 投入了大量资金,这可能会简化用户体验和 跨应用程序的数据共享,但会使这些系统在 架构层面变得更加复杂。

因为我们预计人工智能将成为未来基础核心的一部 后,硬件正在夺回聚光灯,这主要是由于人工 分——就像电力、HTTP和许多其他技术一样——想 象一下人工智能在未来几年走向无处不在时会如何 发展,以及我们人类会如何受益,这是令人兴奋的 。我们这里的科技趋势将记录下旅程的每一步。

直到下一次,

饰 Kuey R

凯利·拉斯科维奇 首席技术干事办公室 《技术趋势》执行主编

潮流趋势

	互动		信息		计算		的业务 技术		计算机的 和信任	核心部分 現代化
2025	空间计算 占据中心 舞台		AI的下一步 是什么?		硬件正在 吞噬世界		它被放大了		新数学	智能核心
2024	接口在新地方		精灵出来了 瓶子		更坚固的	b	从DevOps到 DevEx		捍卫现实	核心训练
2023	穿过玻璃		开放 致艾		在云层之上		灵活性 <u>,</u> 最 好的能力		我们信任我们	连接和扩展
2022			数据共享变得容易		区块链: 准备好营 业了吗	云去了 垂直的	DELTISCH: 工具用于 公平	技术堆栈 身体接触	网络人工智能	它, 扰乱
2021	重新启动 数字的 工作场所	为定制 十亿	机器数据革命	ML操作: 工业化的 人工智能			战略,工程化	供应 释放	零信任	核心复兴
2020	人类 经验 平台		数字双胞胎				金融和 的未来 信息技术	建筑觉醒	道德技术和信任	
2019	聪明的接口	超出营销	以铝为燃料的组织		a中的NoOp 无服务器 世界	os	未来的连接		DevSecOps 和网络需求	
2018	数字现实		企业 数据 主权国家		### 必要的	区块链到 区块链	无领 劳动力	再造技术		新的 核心
2017	混合现实		黑暗分析	机器智力	一切即服务	信任经济	信息技术无限的	不可避免的体系结构		
2016	互联网 东西	AR和VR 上班	工业化的 分析学		使民主化 信任		向右加速	自主平台		重新设计核心系统

注:要了解更多过去的技术趋势,去www.deloitte.com/us/TechTrends

来源:德勤分析。

空间计算占据中心舞台

空间计算的未来是什么?实时模拟只是一个开始,新的令人兴奋的用例可以重塑从医疗保健到娱乐等行业。

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和艾德·伯恩斯

当今的工作方式要求在狭窄的技能范围内有深厚的专业知识。了解项目通常需要大量的专业培训和对背景的理解,这会给工作人员带来负担,并使信息孤立。这在历史上是真实的,尤其是对于任何涉及物理组件的工作流。专门的任务需要在各种独特的系统中进行狭窄的训练,这使得跨学科工作变得困难。

一个例子是计算机辅助设计(CAD)软件。

有经验的设计师或工程师可以查看CAD文件,并 收集有关项目的许多信息。但那些设计和工程领 域之外的人——无论他们是在营销、金融、供应 链、项目管理或任何其他需要了解工作细节的角 色——可能会很难理解这份文件,因为它隐藏了 重要的技术细节。

空间计算是有助于这种协作的一种方法。正如《2024年技术趋势》中所讨论的,空间计算提供了新的方法来将业务数据融入上下文,吸引客户和员工,并与数字系统进行交互。它更无缝地融合了物理和数字,为人类创造了一个身临其境的技术生态系统,使人类能够更自然地与世界进行交互。1例如,从业务软件中收集上下文数据的视觉交互层可以让供应链员工识别需要订购的零件,并使营销人员能够掌握产品的整体美学,以帮助他们开展营销活动。

整个组织的员工都可以理解项目的含义,进而以任何人都可以理解的方式利用项目的详细信息做出决策。

如果当你想到空间计算时,首先想到的是引人注目的虚拟现实(VR)耳机,那么你并不孤单。但是空间计算不仅仅是通过一副护目镜提供视觉体验。它还涉及将标准业务传感器数据与物联网、无人机、光探测和测距(LIDAR)、图像、视频和其他三维数据类型相结合,以创建反映真实世界的业务运营的数字表示。

这些模型可以在一系列交互媒体上呈现,无论是 传统的二维屏幕,轻量级增强现实眼镜,还是完 全沉浸式VR环境。

空间计算感知真实世界的物理组件;使用桥接技术连接物理和数字输入;并将数字输出叠加到混合接口上(图1)。2

空间计算目前的应用既多样又具有变革性。实时模拟已经成为该技术的主要用例。展望未来,进步将继续推动新的和令人兴奋的用例,重塑医疗保健、制造、物流和娱乐等行业,这就是为什么市场预计将在2022年至2033年之间以18.2%的速度增长。3人机交互从现在到未来的旅程有望从根本上改变我们对数字和物理世界的感知和交互方式。

图1

空间操作的可能性

身体的	桥接	数字的
可穿戴设备(例如,耳机、 智能眼镜和别针)	传感器(例如,激光雷达) 和传感器融合	增强现实物体
下一代显示器	计算机视觉	交互式数字对象
物联网设备 (例如,生物识别设备)	GPS/空间制图软件	全息投影
感官技术 (例如,触觉套装)	3D设计和渲染工具	音频输出
空间音频设备	全面的下一代 网络基础设施	神使
摄像机	数据湖	生殖Al
下一代电池		

资料来源:Abhijith Ravinutala 等,"空间计算失效:导航迈向更美好的未来",德勤,4月22,2024。

现在:用模拟人生填满边缘

在其核心,空间计算使数字世界更接近现实生活。许多业务流程有一个物理组件,特别是在资产密集型行业,但是,太多时候,关于这些流程的信息是抽象的,而本质(和洞察力)是丢失的。

企业可以从组织良好、结构化的业务数据中了解更 多有关其运营的信息,但添加物理数据可以帮助他 们更深入地理解这些运营。这就是空间计算的用武 之地。

亚马逊网络服务公司(AWS)的空间计算走向市场 全球负责人大卫·兰德尔说:"在正确的时间以正确的视角获得正确的信息是空间计算的承诺。" "我们相信空间计算能够让我们更加自然地理

。"我们相信空间计算能够让我们更加自然地理解和感知物理和虚拟世界。"四

空间计算的主要应用之一是高级模拟。想想数字 双胞胎,但这些模拟不是监控物理资产的虚拟表 示,而是允许组织测试不同的场景,以了解各种 条件将如何影响他们的运营。

想象一下一家制造公司,设计师、工程师和供应 链团队可以无缝地从一个3D模型开始工作,来制 作、构建和采购他们需要的所有零件; 医生可以 通过增强现实显示器查看患者身体的逼真模拟; 或者是一家可以在2D地图上叠加详细工程模型的 石油和天然气公司。可能性是巨大的,因为我们 的物理世界是多种多样的。

葡萄牙足球俱乐部本菲卡的体育数据科学团队使 用摄像机和计算机视觉来跟踪球员 在整个比赛过程中,开发球员每个动作的全尺寸 3D模型。摄像机从每个球员那里收集2000个数据点 ,人工智能可以帮助识别特定的球员,他们面对的 方向,以及影响他们决策的关键因素。这些数据基 本上创建了每个球员的数字双胞胎,允许团队运行 模拟,如果球员在不同的位置,比赛会如何进行。 黑板上的x和O现在是教练可以试验的三维模型

新:数据是差异化因素

企业IT团队可能需要克服重大障碍来开发全新的空间计算应用程序。在实现更传统的基于软件的项目时,他们可能没有遇到这些障碍。虽然这些项目具有引人注目的商业价值,但是组织将不得不在未知的水域中航行来实现它们。

Sport Lisboa e Benfica的首席信息和技术官Joao Copeto说: "人工智能已经发生了巨大的演变,推 动了这些模型的发展,现在我们可以在决策中使用 它们。"

这不仅仅是输赢的问题,还关系到金钱。本菲卡通过利用数据和人工智能,将球员开发变成了一项有利可图的业务。

在过去的10年里,这支球队创造了一些欧洲最高的 球员转会交易。类似的方法也可以在仓库运营、供 应链和物流或任何其他资源规划过程中产生效益。

高级模拟也出现在医疗环境中。例如,虚拟病人场景可以作为护士或医生的培训补充,在一个比教科书允许的更动态、自定进度的环境中进行模拟。这可能会带来一些挑战,例如患者数据问题,将人工智能集成到现有的学习材料中,以及现实主义问题。但是基于人工智能的模拟将会影响我们的学习方式

模拟也开始影响医疗保健服务。加拿大Fraser Health Authority是利用模拟模型改善护理的先驱 。8不列颠哥伦比亚省公共卫生局创建了首个全系统 数字双胞胎,通过不同的护理设置和模拟生成了强 大的患者移动可视化,以确定部署不同护理模型对 患者访问的影响。虽然这项工作仍在进行中,但弗 雷泽希望通过提高患者对现有服务的认识,改善适 当的、基于需求的医疗服务。 首先,系统之间的数据并不总是可以互操作的,这限制了融合不同来源数据的能力。此外,绘制数据在大多数组织中传播路径的意大利面条图充其量也是迂回的,并且构建数据管道以将正确的空间数据导入可视化系统是一个棘手的工程挑战。确保数据的高质量和真实反映真实世界的情况可能是有效利用空间计算的最大障碍之一。9

AWS的Randle说,在大多数组织中,空间数据一直 没有得到很好的管理,尽管它代表了一些企业最有 价值的信息。

Randle说:"由于这些信息非常新而且种类繁多,因此几乎没有相关的标准,而且大部分信息都是孤立的,有些在云中,大部分则没有。

"这种包含物理和数字资产的数据环境极其分散, 而且管理不善。我们客户的第一个问题是管理他们 的空间数据。"10

反过来,采取更系统的方法来吸收、组织和存储这 些数据,使其更适用于现代人工智能工具,这是真 正的学习开始的地方。

数据管道提供推动业务的燃料

我们经常听说数据是新的石油,但对于一家美国石油和天然气公司来说,这一比喻正在成为现实,这 要归功于在重新铺设一些数据管道方面所做的巨大 努力。

能源公司使用无人机对该领域的设备及其设施进行 3D扫描,然后申请 以确保其资产在预定义的容差范围内运行。它还 基于从工程、运营和企业资源规划系统中提取的 数据创建高保真数字资产。

每个例子中的关键部分?数据整合。这家能源巨 头构建了一个空间存储层,使用应用程序接口连 接到不同的数据源和文件类型,包括机器、无人 机、业务以及图像和视频数据。11

如今,很少有组织投资于这种吸收和存储空间数 据的系统方法。

尽管如此,它仍然是推动空间计算能力的一个关 键因素,也是交付有影响力的 用例。

多模态人工智能创造了环境

在过去,企业无法将空间和业务数据合并到一个可视化中,但这种情况也在发生变化。正如"人工智能的下一步是什么?"多模式的

人工智能工具可以处理几乎任何数据类型作为提示,并以多种格式返回输出,它已经擅长处理几乎任何输入,无论是文本、图像、音频、空间还是结构化数据类型。12这种能力将允许人工智能充当不同数据源之间的桥梁,并解释和添加空间和业务数据之间的上下文。人工智能可以深入不同的数据系统,并提取相关的见解。

这并不是说多模态人工智能消除了所有障碍。 组织仍然需要有效地管理和治理他们的数据。" 垃圾进来,垃圾出去"这句老话从未如此有先见 之明。在杂乱无章和不具代表性的数据上训练人 工智能工具是一种灾难,因为人工智能有能力缩 小错误,远远超过我们在其他类型的软件中看到 的错误。企业应该专注于实现开放数据标准,并 与供应商一起标准化数据类型。

但是一旦他们解决了这些问题,IT团队就可以打 开令人兴奋的应用程序的新大门。"你可以用新 的和创造性的方式来塑造这项技术,"派拉蒙公 司人力资源执行副总裁Johan Eerenstein说。13

下一个:AI是新的UI

空间计算中的许多上述挑战都与集成有关。企业 努力将不同的数据源整合到一个可视化平台中, 并以一种在日常工作中为用户提供价值的方式呈 现这些数据。但很快,人工智能将降低这些障碍 。

如上所述,多模态人工智能可以接受各种输入, 并在一个平台上理解它们,但这可能只是开始。 随着人工智能被集成到更多的应用程序和交互层 ,它允许服务协同行动。正如《AI的下一步是什 么?这已经让位于代理系统,代理系统能够感知 上下文,并能够根据用户偏好主动执行功能。

这些自主代理可能很快会支持供应链经理、软件 开发人员、金融分析师等角色。将明天的代理与 今天的机器人区分开来的将是他们提前计划和预 测用户需求的能力,而无需询问。基于用户偏好 和历史行为,他们将知道如何提供正确的内容或 在正确的时间采取正确的行动。

当人工智能代理和空间计算融合时,用户将不必 考虑他们的数据是否来自空间系统,如激光雷达 或相机(重要的警告是,人工智能系统首先是针对 高质量、管理良好、可互操作的数据进行训练的) ,或者考虑特定应用程序的能力。有了智能代理 ,人工智能就成了接口,所有需要做的就是表达 一个偏好,而不是明确地编程或提示一个应用程 序。想象一下,一个自动提醒金融分析师不断变 化的市场条件的机器人,或者一个为首席管理人 员起草关于商业环境或团队士气变化的每日报告 的机器人。

我们今天与之互动的所有许多设备,无论是电话、平板电脑、电脑还是智能扬声器,在未来都将感觉非常笨重,我们所要做的就是对偏好做出手势,让环境感知的人工智能系统执行我们的命令。最终,一旦这些系统了解了我们的偏好,我们甚至根本不需要手势。

代理人工智能系统对空间计算的全面影响可能需要很多年,但企业仍然可以努力收获空间计算的好处。建立数据管道可能是最重的电梯之一,但一旦建成,它们将打开无数的用例。自主资产检查、更顺畅的供应链、逼真的模拟和身临其境的虚拟

环境只是领先企业使其运营更具空间意识的 几种方式。随着人工智能继续与空间系统交 叉,我们将看到革命性的新数字前沿的出现 ,我们才刚刚开始描绘出它的轮廓。

Abhijith Ravinutala等,"空间计算Dichotomies:导航迈向 更好的未来,"德勤,4月22,2024。

2.同上。

3.未来市场洞察,空间计算市场展望 (2022年至2032年),2022年10月。……s 4. David rand le(AWS全球市场总监),采访

与作者,2024年9月16日。 Joao Copeto,Sport Lisboa e Benfica首席信息和技术官, 对作者的采访,2024年8月27日。

6.同上。

7.Isabelle Bousquette, "公司终于找到了虚拟现实在工 作中的用途",华尔街日报,2024年9月6日。弗雷泽健康 "弗雷泽健康管理局:全系统数字孪生", 2023年10月。 . 8.

9.Gokul Yenduri等, "空间计算:概念,应用,挑战和未来方向 ,"预印本,

(2024年)。

10.兰德尔采访。

- 11.德勤內部资料。 12. 乔治·劳顿,"多模态人工智能",TechTarget,10月访问 29, 2024.....
- 13.Johan Eerenstein(劳动力高级副总裁 enablement, Paramount),对作者的采访,7月16日, 2024.

继续对话

行业领导地位

余

无限现实TM总经理/业务主管|负责人|德勤 咨询LLP +1 312 486 2563 |francesyu@deloitte.com

Frances Yu是LLP德勤咨询公司的合伙人,她曾在一系列全球实践领导岗位上任职。她已经帮助财富500强客户和德勤启动了几个新的企业,发展增长战略,并改变了他们的需求价值链。目前,她是Deloitte的Unlimited RealityTM的美国和全球业务主管兼总经理,这是一项为工业元宇宙时代提供的多网络创新业务,专注于空间计算、数字孪生和多模态人工智能和数据。

尼桑特·拉吉

无限现实TM空间/多模态人工智能和数据主管|董事总经理| nisraj@deloitte.com德勤咨询LLP +1 832 970 7560

Nishanth Raj是德勤咨询公司(Deloitte Consulting)的常务董事兼AI和data / Unlimited RealityTM负责人,专门研究能源和化工行业。凭借二十多年的咨询经验,他帮助客户利用技术、人工智能和数据来推动商业价值,并将他们转变为洞察力驱动的组织。

斯特凡·基歇尔

无限现实技术首席技术官|董事总经理|德勤咨询 LLP

+1 404 631 2541 | skircher@deloitte.com

斯特凡·基歇尔是LLP德勤咨询公司产品和解决方案业务的董事总经理,也是德勤无限现实业务的首席技术官。他在行业、技术战略和各种行业的解决方案构建、R&D、创新以及与AWS等战略技术合作伙伴的合作方面拥有超过25年的专业知识。

Robert Tross

无限现实全球定位系统市场领导者|委托人|德勤 咨询LLP

+1 703 251 1250 | rtross@deloitte.com

Robert Tross是LLP德勤咨询公司GPS政府技术业务的负责人,领导无限现实TM联邦市场。他拥有超过25年的经验,专注于各种平台的全渠道体验,包括web、沉浸式/空间、社交媒体、移动、可穿戴设备和平板电脑等。

感谢

非常感谢德勤的众多学科带头人,他们为我们的互动章节研究做出了贡献:Lars Cromley、Stefan、Kaitlyn Kuczer、Lena La、 Tim Murphy、Ali Newman、Bob Tross和Frances Yu。

艾尔的下一步是什么?

随着大型语言模型的不断发展,新的模型和代理被证明在离散任务中更有效。艾尔需要不同的马 参加不同的比赛。

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和阿比吉特·拉维努塔拉

眨眼之间,你就会错过它:人工智能的进步速度超出了预期。去年,当组织争相了解如何采用生成式人工智能时,我们提醒《技术趋势2024》的读者以需求为导向,因为他们将自己与竞争对手区分开来,并采用战略性方法来扩展他们对大型语言模型(LLM)的使用。今天,LLM已经扎下了根,据估计,多达70%的组织都在积极探索或实现LLM用例。1

但是主要组织已经在考虑艾尔的下一章了。企业现在不再依赖大型人工智能公司构建的基础模型,这些模型可能更强大,建立在比所需数据更多的基础上,而是考虑实施多个更小的模型,以更有效地满足业务需求。2 LLM将继续发展,并成为某些用例的最佳选择,如通用聊天机器人或科学研究模拟,但浏览您的财务数据以思考错过的收入机会的聊天机器人不需要与回复客户查询的模型相同。简而言之,我们可能会看到不同的马匹在不同的球场上大量繁殖。

一系列协同工作的更小的模型可能最终服务于不同的用例,而不是当前的LLM方法。新的开源选项和多模式输出(而不仅仅是文本)使组织能够开发全新的产品。3

在未来的几年中,越来越多的更小、更专业的模型可能会再次改变企业中人工智能的目标。

组织可能会见证人工智能从增加知识到增加执行力的根本转变。

今天对智能人工智能的投资,被称为下一个时代 ,可能会颠覆我们的工作和生活方式,为消费者 和企业配备大量基于硅的助手。想象一下,人工 智能代理可以执行离散的任务,如在董事会会议 上提交财务报告或申请拨款。"有一个应用程序 "很可能变成"有一个代理。"

现在:让基本面正确

LLM无疑是令人兴奋的,但需要大量的基础工作 。许多企业不是自己构建模型,而是与 Anthropic或OpenAI等公司合作,或通过超大规 模计算访问人工智能模型。4根据Gartner的数据 , 人工智能服务器将占超大规模计算总服务器支 出的近60%。5一些企业在使用LLM时发现了直接 的业务价值,而其他企业仍对根据外部数据训练 的LLM的准确性和适用性保持警惕。6在企业时间 范围内,人工智能进步仍处于萌芽阶段(爬行或行 走,如我们去年所述)。根据Deloitte和 Fivetran和Vanson Bourne最近的调查,在大多 数组织中,不到三分之一的生成式人工智能实验 已经进入生产阶段,这通常是因为组织难以访问 或清理运行人工智能程序所需的所有数据。7为了 实现规模化,组织可能需要进一步考虑数据和技 术,以及战略、流程和人才,正如Deloitte AI Institute最近的报告中所概述的那样。

According to Deloitte's 2024 State of Generative AI in the Enterprise Q3 report, 75% of surveyed organizations have increased their investments in data-life-cycle management due to generative AI.8 Data is foundational to LLMs, because bad inputs lead to worse outputs (in other words, garbage in, garbage squared). That's why data-labeling costs can be a big driver of AI investment.9 While some AI companies scrape the internet to build the largest models possible, savvy enterprises create the *smartest* models possible, which requires better domain-specific "education" for their LLMs. For instance, LIFT Impact Partners, a Vancouver-based organization that provides resources to nonprofits, is fine-tuning its AI-enabled virtual assistants on appropriate data to help new Canadian immigrants process paperwork. "When you train it on your organization's unique persona, data, and culture, it becomes significantly more relevant and effective," says Bruce Dewar, president and CEO of LIFT Impact Partners. "It brings authenticity and becomes a true extension of your organization."10

Data enablement issues are dynamic. Organizations surveyed by Deloitte said new issues could be exposed by the scale-up of AI pilots, unclear regulations around sensitive data, and questions around usage of external data (for example, licensed third-party data). That's why 55% of organizations surveyed avoided certain AI use cases due to data-related issues, and an equal proportion are working to enhance their data security. Organizations could work around these issues by using out-of-the-box models offered by vendors, but differentiated AI impact will likely require differentiated enterprise data.

Thankfully, once the groundwork is laid, the benefits are clear: Two-thirds of organizations surveyed say they're increasing investments in generative AI because they've seen strong value to date.¹² Initial examples of real-world value are also appearing across industries, from insurance claims review to telecom troubleshooting and consumer segmentation tools.¹³ LLMs are also making waves in more specialized use cases, such as space repairs, nuclear modeling, and material design.¹⁴

As underlying data inputs improve and become more sustainable, LLMs and other advanced models (like simulations) may become easier to spin up and scale. But size isn't everything. Over time, as methods for AI training and implementation proliferate, organizations

are likely to pilot smaller models. Many may have data that can be more valuable than previously imagined, and putting it into action through smaller, task-oriented models can reduce time, effort, and hassle. We're poised to move from large-scale AI projects to AI everywhere, as discussed in this year's introduction.

New: Different horses for different courses

While LLMs have a vast array of use cases, the library is not infinite (yet). LLMs require massive resources, deal primarily with text, and are meant to augment human intelligence rather than take on and execute discrete tasks. As a result, says Vivek Mohindra, senior vice president of corporate strategy at Dell Technologies, "there is no one-size-fits-all approach to AI. There are going to be models of all sizes and purpose-built options—that's one of our key beliefs in AI strategy." ¹⁵

Over the next 18 to 24 months, key AI vendors and enterprise users are likely to have a toolkit of models comprising increasingly sophisticated, robust LLMs along with other models more applicable to day-to-day use cases. Indeed, where LLMs are not the optimal choice, three pillars of AI are opening new avenues of value: small language models, multimodal models, and agentic AI (figure 1).

Small language models

LLM providers are racing to make AI models as efficient as possible. Instead of enabling new use cases, these efforts aim to rightsize or optimize models for existing use cases. For instance, massive models are not necessary for mundane tasks like summarizing an inspection report—a smaller model trained on similar documents would suffice and be more cost-efficient.

Small language models (SLMs) can be trained by enterprises on smaller, highly curated data sets to solve more specific problems, rather than general queries. For example, a company could train an SLM on its inventory information, enabling employees to quickly retrieve insights instead of manually parsing large data sets, a process that can sometimes take weeks. Insights from such an SLM could then be coupled with a user interface application for easy access. 小型语言模型
文本,可自定义,应用于不同的使用案例(可培训)
投入 文本
输出 一些
数据 较少的
用户化 需要定制和培训
他们将要处理的数据

多模式的

无法在较小的数据集上训练;
需要更大的投入和更多样的产出

不仅仅是文字

更大的

有意义的

定制化程度较低,因为
所需的数据量

代理的
可以采取具体行动

文本

最

待定

供应商提供开箱即用的功能,但在定制时效果最佳

来源:德勤研究。

Databricks人工智能副总裁纳文·拉奥(Naveen Rao)认为,更多的组织将在人工智能方面采取这种系统方法:"一台理解一切的神奇计算机是科幻小说中的幻想。相反,就像我们在工作场所组织人一样,我们应该把我们的问题分解开来。特定领域和定制的模型可以处理特定的任务,工具可以运行确定性的计算,数据库可以获取相关的数据。

这些人工智能系统比任何一个单独的组件都能更好 地提供解决方案。"16

较小模型的一个额外好处是,它们可以在设备上运行,并由企业在较小的高度精确的数据集上进行训练,以解决更具体的问题,而不是一般性的查询,如"硬件正在吞噬世界"中所述像微软和Mistral这样的公司

目前正在努力提炼这种SLM,建立在更少的

参数,从他们的较大的人工智能产品,和元提供了 跨较小的模型和前沿模型的多个选项。17

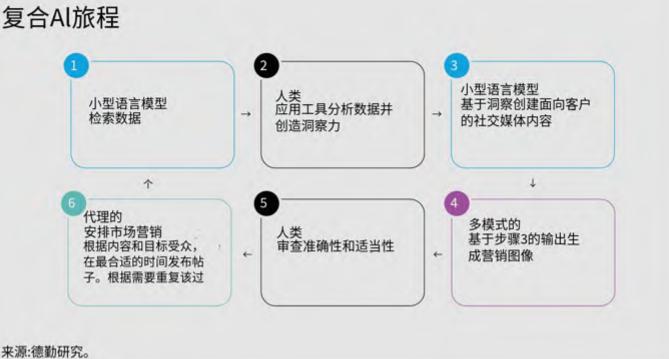
最后,SLM中的许多进步都是通过像Hugging Face或Arcee这样的公司提供的开源模型实现的。 Al.18这种模型对于企业使用来说已经成熟,因为它们可以根据任何数量的需求进行定制,只要IT团队拥有内部人工智能人才来微调它们。事实上,最近的一份Databricks报告表明,超过75%的组织正在选择更小的开源模型,并针对特定的用例对其进行定制。19由于开源模型由于多元化编程社区的贡献而不断改进,这些模型的规模和效率可能会迅速提高。

Multimodal models

Humans interact through a variety of mediums: text, body language, voice, videos, among others. Machines are now hoping to catch up.²⁰ Given that business needs are not contained to text, it's no surprise that companies are looking forward to AI that can take in and produce multiple mediums. In some ways, we're already accustomed to multimodal AI, such as when we speak to digital assistants and receive text or images in return, or when we ride in cars that use a mix of computer vision and audio cues to provide driver assistance.²¹

Multimodal generative AI, on the other hand, is in its early stages. The first major models, Google's Project Astra and OpenAI's GPT-4 Omni, were showcased in May 2024, and Amazon Web Services' Titan offering has similar capabilities.²² Progress in multimodal generative AI may be slow because it requires significantly higher amounts of data, resources, and hardware.²³ In addition, the existing issues of hallucination and bias that plague text-based models may be exacerbated by multimodal generation.

Still, the enterprise use cases are promising. The notion of "train once, run anywhere (or any way)" promises a model that could be trained on text, but deliver answers in pictures, video, or sound, depending on the use case and the user's preference, which improves digital inclusion. Companies like AMD aim to use the fledgling technology to quickly translate marketing materials from English to other languages or to generate content.²⁴ For supply chain optimization, multimodal generative AI can be trained on sensor data, maintenance logs, and warehouse images to recommend ideal stock quantities.²⁵ This also leads to new opportunities with spatial computing, which we write about in "Spatial computing takes center stage." As the technology progresses and model architecture becomes more efficient, we can expect to see even more use cases in the next 18 to 24 months.


Agentic Al

The third new pillar of AI may pave the way for changes to our ways of working over the next decade. Large (or small) action models go beyond the question-and-answer capabilities of LLMs and complete discrete tasks in the real world. Examples range from booking a flight based on your travel preferences to providing automated customer support that can access databases and execute needed tasks—likely without the need for highly specialized prompts.²⁶ The proliferation of such action models, working as autonomous digital agents, heralds the beginnings of agentic AI, and enterprise software vendors like Salesforce and ServiceNoware already touting these possibilities.²⁷

Chris Bedi, chief customer officer at ServiceNow, believes that domain- or industry-specific agentic AI can change the game for humans and machine interaction in enterprises.²⁸ For instance, in the company's Xanadu platform, one AI agent can scan incoming customer issues against a history of incidents to come up with a recommendation for next steps. It then communicates to another autonomous agent that's able to execute on those recommendations, and a human in the loop reviews those agent-to-agent communications to approve the hypotheses. In the same vein, one agent might be adept at managing workloads in the cloud, while another provisions orders for customers. As Bedi says, "Agentic AI cannot completely take the place of a human, but what it can do is work alongside your teams, handling repetitive tasks, seeking out information and resources, doing work in the background 24/7, 365 days a year."29

Finally, aside from the different categories of AI models noted above, advancements in AI design and execution can also impact enterprise adoption—namely, the advent of liquid neural networks. "Liquid" refers to the flexibility in this new form of training AI through a neural network, a machine learning algorithm that mimics the human brain's structure. Similar to how quantum computers are freed from the binary nature of classical computing, liquid neural networks can do more with less: A couple dozen nodes in the network might suffice, versus 100,000 nodes in a more traditional network. The cutting-edge technology aims to run on less computing power, with more transparency, opening up possibilities for embedding AI into edge devices, robotics, and safety-critical systems. 30 In other words, it's not just the applications of AI but also its underlying mechanisms that are ripe for improvement and disruption in the coming years.

复合AI旅程

下一个:有一个代理人

在未来十年,人工智能可能会完全专注于执行, 而不是人类的增强。未来的员工可以向人工智能 代理发出简单明了的请求, 例如, "关闭02的账 簿,生成一份关于EBITDA的报告。"像在企业层 次结构中一样,主代理然后将所需的任务委派给 具有不同角色的代理, 这些代理跨不同的生产力 套件级联以采取行动。与人类一样,团队合作可 能是使机器提高能力的缺失因素。31这导致了未 来几年的一些关键考虑因素(图2):

人工智能与人工智能的交流。代理人可能会 有一种比人类语言更有效的相互交流方式, 因为我们不需要模仿人类的聊天机器人相互 交谈。32更好的人工智能对人工智能的交流 可以提高结果,因为更少的人需要成为专家 才能受益于人工智能。相反,人工智能可以 适应每个人的交流方式

 就业机会的转移和创造。一些人声称,像 prompt engineer这样的角色可能会过时。 34然而,这些员工的人工智能专业知识将仍然 适用,因为他们专注于管理、培训和与人工智 能代理合作,就像他们今天与LLM合作一样。 例如,一个拥有人工智能专家的精益IT团队可 能在企业的某种"人工智能工厂"中构建它需 要的代理。如前所述,剩余劳动力技能和教育 的重大转变可能最终会奖励更多的人类技能, 如创造力和设计

技术趋势。

隐私和安全。拥有系统访问权限的代理的激 增可能会引发对网络安全的广泛担忧,随着 时间的推移,我们越来越多的数据被人工智 能系统访问, 这只会变得更加重要。风险和 信任的新范式将需要充分利用人工智能代理 的应用。

- 能源和资源。人工智能的能源消耗越来越令人担忧。35为了减轻对环境的影响,未来的人工智能开发需要平衡性能和可持续性。它需要利用液态神经网络或其他有效形式的训练人工智能的改进,更不用说完成所有这些工作所需的硬件,正如我们在"硬件正在吞噬世界"中讨论的那样。
- 未来的领导。人工智能具有变革的潜力,正如 大家在过去一年中听到的那样,但这只是在领 导层允许的范围内。

将人工智能作为一种更快的做事方式,最好的结果是错失潜力,最糟糕的结果是放大偏见。 36富有想象力、勇敢的领导者应该敢于将人工智能从僵化的最佳实践带到"下一个实践"的创造,在那里我们找到新的方式来组织我们自己和我们的数据,走向人工智能支持的世界。 当谈到人工智能时,企业在未来可能会有与今天相同的考虑因素:数据、数据和数据。在人工智能系统能够达到通用人工智能或像人脑一样高效地学习之前,37它们将渴望更多的数据和输入,以帮助它们变得更加强大和准确。

今天采取的组织、简化和保护企业数据的措施可能会在未来几年带来回报,因为数据债务有一天可能会成为技术债务的最大部分。此类基础工作还应帮助企业为监管挑战和道德不确定性(如数据收集和使用限制、公平性问题、缺乏透明度)做好准备,这些挑战和不确定性会随着引领这一强大的新技术走向未来而出现。38垃圾进、垃圾出的风险只会越来越大:选择天才进、天才出会好得多。39

Endnotes

- 1. Carl Franzen, "More than 70% of companies are experimenting with generative AI, but few are willing to commit more spending," *VentureBeat*, July 25, 2023.
- Tom Dotan and Deepa Seetharaman, "For AI giants, smaller is sometimes better," The Wall Street Journal, July 6, 2024.
- 3. Google Cloud, "Multimodal AI," accessed October 2024.
- 4. Silvia Pellegrino, "Which companies have partnered with OpenAI?," Tech Monitor, May 15, 2023; Maxwell Zeff, "Anthropic launches Claude Enterprise plan to compete with OpenAI," Tech Crunch, September 4, 2024; Jean Atelsek and William Fellows, "Hyperscalers stress AI credentials, optimization and developer empowerment," S&P Global Market Intelligence, accessed October 2024.
- 6. Gartner, "Gartner forecasts worldwide IT spending to grow 8% in 2024," press release, April 17, 2024. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.
- Patricia Licatta, "Between sustainability and risk: Why CIOs are considering small language models," CIO, August 1, 2024.
- 7. Jim Rowan et al., "Now decides next: Moving from potential to performance," Deloitte's State of Generative AI in the Enterprise Q3 report, August 2024; Mark Van de Wiel, "New AI survey: Poor data quality leads to \$406 million in losses," Fivetran, March 20, 2024.
- **8.** Rowan et al., "Now decides next: Moving from potential to performance."
- **9.** Sharon Goldman, "The hidden reason AI costs are soaring—and it's not because Nvidia chips are more expensive," *Fortune*, August 23, 2024.
- **10.** *Deloitte Insights*, "Lifting up the nonprofit sector through generative AI," September 23, 2024.
- 11. Jim Rowan et al., "Now decides next: Moving from potential to performance."
- **12.** İbid.
- **13.** Ibid.
- 14. Sandra Erwin, "Booz Allen deploys advanced language model in space," *SpaceNews*, August 1, 2024; Argonne National Laboratory, "Smart diagnostics: How Argonne could use Generative AI to empower nuclear plant operators," press release, July 26, 2024; Kevin Maik Jablonka et al., "14 examples of how LLMs can transform materials science and chemistry: A reflection on a large language model hackathon," *Digital Discovery* 5 (2023).
- **15.** Phone interview with Vivek Mohindra, senior vice president of corporate strategy, Dell Technologies, October 11, 2024.
- **16.** Phone interview with Naveen Rao, vice president of AI at Databricks, October 2, 2024.
- 17. YouTube, "Introducing the next evolution of generative AI: Small language models," Microsoft Dynamics 365, video, May 9, 2024; Llama team, "The Llama 3 herd of models," Meta, July 23, 2024.

- **18.** Rachel Metz, "In AI, smaller, cheaper models are getting big attention," Bloomberg, August 8, 2024.
- 19. Databricks, "AI is in production," accessed October 2024.
- **20.** MIT Technology Review Insights, "Multimodal: AI's new frontier," May 8, 2024.
- **21.** Akesh Takyar, "Multimodal models: Architecture, workflow, use cases and development," LeewayHertz, accessed October 2024.
- **22.** NeuronsLab, "Multimodal AI use cases: The next opportunity in enterprise AI," May 30, 2024.
- **23.** Ellen Glover, "Multimodal AI: What it is and how it works," Built In, July 1, 2024.
- **24.** Mary E. Morrison, "At AMD, opportunities, challenges of using AI in marketing," Deloitte's CIO Journal for The Wall Street Journal, July 2, 2024.
- **25.** NeuronsLab, "Multimodal AI use cases: The next opportunity in enterprise AI."
- **26.** Oguz A. Acar, "AI prompt engineering isn't the future," *Harvard Business Review*, June 6, 2023.
- Salesforce, "Agentforce," accessed October 2024; ServiceNow, "Our biggest AI release is here," accessed October 2024.
- **28.** Phone interview with Chris Bedi, chief customer officer at ServiceNow, September 30, 2024.
- **29.** Ibid.
- **30.** Brian Heater, "What is a liquid neural network, really?," *TechCrunch*, August 17, 2023.
- **31.** Edd Gent, "How teams of AI agents working together could unlock the tech's true power," *Singularity Hub*, June 28, 2024.
- **32.** Will Knight, "The chatbots are now talking to each other," *WIRED*, October 12, 2023.
- **33.** David Ellis, "The power of AI in modeling healthy communications," *Forbes*, August 17, 2023.
- **34.** Acar, "AI prompt engineering isn't the future."
- **35.** James Vincent, "How much electricity does AI consume?," *The Verge*, February 16, 2024.
- **36.** IBM, "Shedding light on AI bias with real world examples," October 16, 2023.
- **37.** University of Oxford, "Study shows that the way the brain learns is different from the way that artificial intelligence systems learn," January 3, 2024.
- **38.** Nestor Maslej et al., *The AI Index 2024 annual report*, AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2024.
- **39.** Deloitte, Work Re-Architected video series, accessed October 2024.

继续对话

行业领导地位

Jim Rowan Al | Principal |德勤咨询公司主管 Jimrowan@deloitte.com |+1 617 437 3470

吉姆·罗文是德勤的负责人,目前是 德勤的AI。他使用数据驱动的分析和人工智能解决方案帮助客户实现业务转型,从而做出更好的决策。在他的职业生涯中,Rowan为生命科学、医疗保健和电信行业的客户提供服务。他还对这些组织中的财务职能有着深入的了解,曾领导过分析、规划和预测,并关闭了一些项目,使财务职能能够接受数字化转型。Rowan曾在德勤咨询公司的战略和分析实践中领导人工智能和数据运营。

尼廷·米塔尔 全球铝领导者|负责人| LLP德勤咨询公司

尼廷·米塔尔是LLP德勤咨询公司的负责人。他目前担任 美国人工智能(AI)战略增长咨询负责人以及全球战略、分 析和M&A负责人。他是2019年纽约人工智能峰会人工智 能创新者奖的获得者。他专门建议客户通过数据和认知驱 动的转换来实现竞争优势,这种转换促进了放大的智能, 并使我们的客户能够在中断之前做出战略选择和转换。

在他的职业生涯中,米塔尔一直是全球客户值得信赖的顾问, 并在多个行业领域工作过。 他的主要工作重点是与生命科学和医疗保健客户合作,实 施促进组织智能的大规模数据计划,以及使用高级分析和 人工智能来推动见解和业务战略。 小卢·迪洛伦佐

首席|人工智能和数据战略实践主管|美国首席信息官和首席数据官项目,国家领导人| Idilorenzojr@deloitte. com德勤咨询LLP +1 612 397 4000

Lou DiLorenzo担任德勤咨询公司人工智能和数据战略实践以及德勤美国首席信息官和CDAO高管加速器项目的全国负责人。他是德勤(Deloitte)生成式人工智能实践领导团队的成员,负责生成式人工智能孵化器。他拥有超过20年的跨部门运营、创业和咨询经验,在召集关键利益相关方帮助领导变革、开发新能力和交付积极的财务成果方面有着成功的记录。此前,DiLorenzo曾担任消费者健康保险初创公司的首席运营官,并担任嘉吉食品配料和生物工业部门的全球首席信息官。他经常向主要出版物投稿,并主持播客Techfluential。

感谢

非常感谢德勤的众多学科带头人,他们为我们的信息章节研究做出了贡献:Lou DiLorenzo、Lena La、Nitin Mittal、Sanghamitra Pati、Jim Rowan和巴里斯·萨勒。

硬件正在吞噬世界

人工智能革命将需要大量的能源和硬件资源,使企业基础设施再次成为一个战略优势

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和阿比吉特·拉维努塔拉

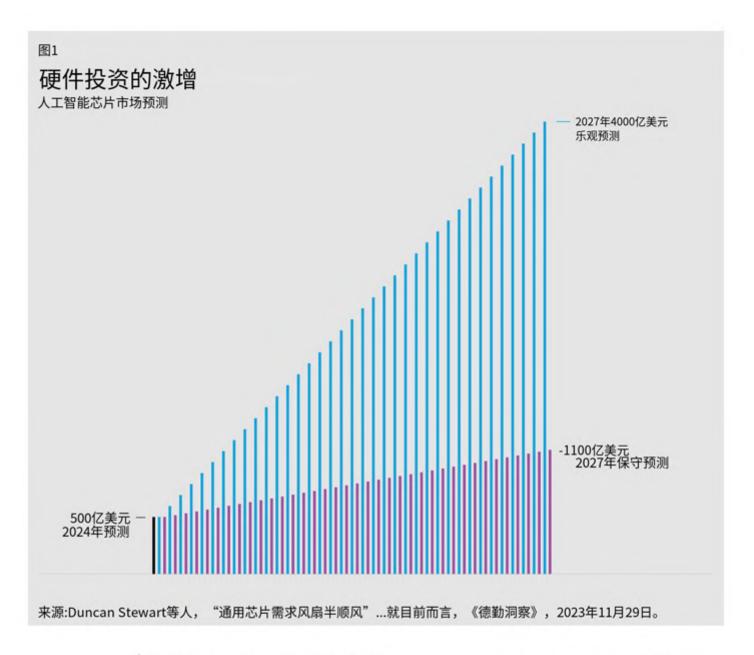
在多年的"软件吞噬世界"之后,现在轮到硬件盛宴了。我们在《2024年技术趋势》的计算章节中预见到,随着摩尔定律走到其假定的尽头,人工智能革命的承诺越来越依赖于获得适当的硬件。例证:随着专用芯片成为人工智能计算工作负载的宝贵资源,NVIDIA现在是世界上最有价值(也最受关注)的公司之一。1根据德勤基于世界半导体贸易统计预测的研究,仅用于生成式人工智能的芯片市场今年预计就将超过500亿美元。2

一项关于为人工智能供电的研究估计,未来十年,全球数据中心的电力消耗可能会增加两倍,这主要是由于人工智能的需求。6即使人工智能硬件激增并进入日常消费者和企业设备,也需要在能源和效率方面进行创新,以使人工智能硬件更易于使用和可持续发展。想想五年前因经济原因关闭的三里岛核电站1号机组,它将于2028年重新开放,为数据中心提供无碳电力。7

企业的一个关键硬件用例可能在于AI嵌入式最终用户和边缘设备。以个人电脑为例。多年来,企业笔记本电脑已经商品化。但是现在,由于嵌入人工智能的个人电脑,我们可能正处于计算领域重大转变的尖端。AMD、戴尔和惠普等公司已经在宣传人工智能电脑在"面向未来"的技术基础设施、降低云计算成本和增强数据隐私方面的潜力。3通过访问离线人工智能模型进行图像生成、文本分析和快速数据检索,知识工作者可以获得更快、更准确的人工智能。也就是说,企业应该战略性地大规模更新终端用户计算——浪费供应有限的人工智能资源是没有用的。

当然,所有这些进步都是有代价的。

随着大型人工智能模型的能源需求持续增长,数据中心成为可持续发展的新焦点。4国际能源署表示,到2026年,人工智能的需求将显著增加数据中心的电力需求,相当于瑞典或德国的年度能源需求。5德勒最近的一份


展望未来,人工智能硬件有望超越

它和进入物联网。越来越多的智能设备可能变得更加智能,因为人工智能使它们能够分析它们的使用情况,并承担新的任务(作为代理人工智能,在"人工智能的下一步是什么?"预付款)。今天的良性用例(如牙刷中的人工智能)并不代表明天的强大潜力(如救生医疗设备中的人工智能)。8当更智能的设备使我们与机器人的关系发生重大变化时,硬件的真正力量可能会被释放出来。

现在:薯片喂!

一代技术专家被教导相信软件是投资回报的关键, 因为它具有可扩展性、易于更新和知识产权保护。 9但是现在,随着计算机从计算器发展到思考器,硬件投资正在激增。10我们去年写道,图形处理单元(GPU)等专用芯片正在成为训练人工智能模型的首选 资源。在2024年的TMT预测中

报告中,德勤估计,2024年人工智能芯片的总销售额将占全球芯片市场的11%

5760亿美元。11人工智能芯片市场目前约为 500亿美元,预计到2027年将达到4000亿美元, 尽管更保守的估计是1100亿美元(图1)。12

大型科技公司正在推动这一需求的一部分,因为 他们可能会构建自己的人工智能模型并在内部部 署专用芯片。13然而,各行业的企业都在寻求计 算能力来满足其IT目标。例如,根据 Databricks报告显示,在运行大型语言模型(LLM)以 处理欺诈检测和财富管理方面,金融服务行业的 GPU使用率增长最快,在过去六个月中增长了88% 。14

所有这些对GPU的需求已经超过了它的能力。在今天的淘金潮中,为今天的技术变革提供"镐和铲"或工具的公司正在大获全胜。15 NVIDIA的首席执行官黄仁勋指出,云GPU的能力主要是

filled, but the company is also rolling out new chips that are significantly more energy-efficient than previous iterations. ¹⁶ Hyperscalers are buying up GPUs as they roll off the production line, spending almost \$US1 trillion on data center infrastructure to accommodate the demand from clients who rent GPU usage. ¹⁷ All the while, the energy consumption of existing data centers is pushing aging power grids to the brink globally. ¹⁸

Understandably, enterprises are looking for new solutions. While GPUs are crucial for handling the high workloads of LLMs or content generation, and central processing units are still table stakes, neural processing units (NPUs) are now in vogue. NPUs, which mimic the brain's neural network, can accelerate smaller AI workloads with greater efficiency and lower power demands, 19 enabling enterprises to shift AI applications away from the cloud and apply AI locally to sensitive data that can't be hosted externally. 20 This new breed of chip is a crucial part of the future of embedded AI.

Vivek Mohindra, senior vice president of corporate strategy at Dell Technologies, says, "Of the 1.5 billion PCs in use today, 30% are four years old or more. None of these older PCs have NPUs to take advantage of the latest AI PC advancements." A great refresh of enterprise hardware may be on the horizon. As NPUs enable end-user devices to run AI offline and allow models to become smaller to target specific use cases, hardware may once again be a differentiator for enterprise performance. In a recent Deloitte study, 72% of respondents believe generative AI's impact on their industry will be "high to transformative." Once AI is at our fingertips thanks to mainstream hardware advancements, that number may edge closer to 100%.

New: Infrastructure is strategic again

The heady cloud-computing highs of assumed unlimited access are giving way to a resource-constrained era. After being relegated to a utility for years, enterprise infrastructure (for example, PCs) is once again strategic. Specifically, specialized hardware will likely be crucial to three significant areas of AI growth: AI-embedded devices and the Internet of Things, data centers, and advanced physical robotics. While the impact on robotics may occur over the next few years, as we discuss in the next section, we anticipate that enterprises will be

grappling with decisions about the first two areas over the next 18 to 24 months. While AI scarcity and demand persist, the following areas may differentiate leaders from laggards.

Edge footprint

By 2025, more than 50% of data could be generated by edge devices.²³ As NPUs proliferate, more and more devices could be equipped to run AI models without relying on the cloud. This is especially true as generative AI model providers opt for creating smaller, more efficient models for specific tasks, as discussed in "What's next for AI?" With quicker response times, decreased costs, and greater privacy controls, hybrid computing (that is, a mix of cloud and on-device AI workloads) could be a must-have for many enterprises, and hardware manufacturers are betting on it.²⁴

According to Dell Technologies' Mohindra, processing AI at the edge is one of the best ways to handle the vast amounts of data required. "When you consider latency, network resources, and just sheer volume, moving data to a centralized compute location is inefficient, ineffective, and not secure," he says. "It's better to bring AI to the data, rather than bring the data to AI."²⁵

One major bank predicts that AI PCs will account for more than 40% of PC shipments in 2026.²⁶ Similarly, nearly 15% of 2024 smartphone shipments are predicted to be capable of running LLMs or image-generation models.²⁷ Alex Thatcher, senior director of AI PC experiences and cloud clients at HP, believes that the refresh in devices will be akin to the major transition from command-line inputs to graphical user interfaces that changed PCs in the 1990s. "The software has fundamentally changed, replete with different tools and ways of collaborating," he says. "You need hardware that can accelerate that change and make it easier for enterprises to create and deliver AI solutions." Finally, Apple and Microsoft have also fueled the impending hardware refresh by embedding AI into their devices this year.²⁹

As choices proliferate, good governance will be crucial, and enterprises have to ask the question: How many of our people need to be armed with next-generation devices? Chip manufacturers are in a race to improve AI horsepower,³⁰ but enterprise customers can't afford to refresh their entire edge footprint with each new

进步。相反,他们应该制定分层采用的策略,让这些设备发挥最大作用。

构建还是购买

对于购买或租赁专用硬件,组织通常会考虑他们的长期成本模型、预期的使用时间框架以及进步的必要性。然而,人工智能对这一决定施加了另一个层面的竞争压力。由于像GPU这样的硬件仍然稀缺,而且市场要求所有组织进行人工智能更新,许多公司都试图租用尽可能多的计算能力。

如果没有有序的数据支持,组织可能很难利用人工智能。与其争抢GPU,不如去了解组织在哪些方面已经为AI做好了准备,可能会更有效率。一些领域可能涉及私人或敏感数据;投资npu可以使这些工作负载保持离线,而其他工作负载可能适合云。得益于过去十年的云经验,企业知道在失控硬件上运行失控模型的成本可能会迅速膨胀。31将这些成本计入运营支出可能不是最佳答案

一些估计甚至说GPU没有得到充分利用。32 Thatcher认为企业GPU利用率只有15%到20%, 惠普正在通过新的高效方法解决这个问题:"我们 已经使每个惠普工作站能够在我们的企业中共享 其人工智能资源。想象一下搜索空闲GPU并使用 它们来运行工作负载的能力。我们看到按需计算 加速提高了7倍,这可能很快成为行业标准。"33

此外,云上AI资源的市场千变万化。例如,对人工智能主权的担忧在全球范围内日益增加。34尽管世界各地的公司都批准在美国云服务器上运行他们的电子商务平台或网站,但人工智能对国家情报和数据管理的适用性使得一些人对将人工智能工作负载放在海外犹豫不决。

这为新的国家人工智能云提供商或私有云参与者 开辟了一个市场。35 GPU即服务计算初创公司是 超大规模计算的替代选择。36 这意味着租赁计算能力的市场可能很快会更加分 散,这可能会给企业客户提供更多选择。

最后,人工智能可能是未来两年的首要考虑因素 ,但今天的建造与购买决策可能会产生超出人工 智能考虑范围的影响。企业可能很快会考虑将量 子计算用于下一代密码学(特别是在人工智能吸收 和传输更敏感的数据时)、优化和模拟,正如我们 在"新数学:解决密码学"中讨论的那样

量子时代。"

数据中心可持续发展

关于运行大型人工智能模型的数据中心的能源使用,已经说了很多。主要的银行报告质疑我们是否有满足人工智能需求的基础设施。37主要聊天机器人的日常用电量相当于近180,000个美国家庭的日常消耗。38简而言之,人工智能需要数据中心提供前所未有的资源,而老化的电网可能无法胜任这项任务。虽然许多公司可能担心获得像GPU这样的人工智能芯片来运行工作负载,但可持续性可能是一个更大的问题。

目前,旨在使人工智能更可持续的多项进步正在 进行中。企业在考虑人工智能数据中心时,应注 意未来两年这些领域的进步(图2):

 可再生能源:数据中心和云上人工智能提供商 寻找可持续能源的压力越来越大——对人工智 能的快速增长的关注可能有助于整体转型

从经济到可再生能源。39主要的技术公司已 经在探索与核能供应商的合作关系。40在线 翻译服务DeepL在冰岛托管了一个数据中心 ,该数据中心由自然寒冷的空气冷却,完全 由地热和水力发电供电。41在萨尔瓦多,公 司甚至在探索如何利用火山为数据中心供电 。42

 可持续发展应用:虽然建造人工智能消耗大量 能源,但在许多情况下,应用人工智能可以 抵消一些碳成本。AI已经是 用于绘制和跟踪森林砍伐、冰山融化和恶劣天 气模式。它还可以帮助公司跟踪他们的排放, 并更有效地使用数据中心。43

硬件改进:新的GPU和npu已经为企业节省了能源和成本。创新不是停滞不前。英特尔和Global Foundries最近推出了新的芯片,可以利用光而不是电来传输数据。44这可能会彻底改变数据中心,实现更低的延迟、更分散的结构和更高的可靠性。虽然这种光纤方法现在很贵,但未来几年成本可能会下降,使这种类型的芯片成为主流。

最后,如果没有对连接性的认可,基础设施的复兴是不完整的。随着边缘设备的激增和公司依赖从数据中心租赁GPU的使用,互联的复杂性可能会成倍增加。NVIDIA的NVLink等高性能互连技术已经为高级GPU和其他芯片之间的通信做好了准备。45 6G的进步可以集成全球陆地和非陆地网络(如卫星)以实现无处不在的连接,因此开普敦的一家公司依靠雷克雅未克的数据中心实现了最小的延迟。46

来源:德勤研究。

正如华尔街日报所指出的,企业的人工智能转型类似于许多汽车制造商正在经历的向电动的过渡。 47技术基础设施需要逐个组件地重新思考,今天围绕边缘足迹、专用硬件投资和可持续性做出的决策可能会产生持久的影响。

接下来:我们被许诺机器人

如果今天的硬件需要战略更新,那么在未来十年,当机器人成为主流,智能设备变得名副其实时,企业可能会有更多的事情要做。以最新的智能工厂为例,这些工厂使用计算机视觉、无处不在的传感器和数据来构建能够在生产产品时学习和改进的机器。48多个嵌入人工智能的设备组成的网状网络可以创建协作计算环境并协调各种资源,而不是简单地提供读数或调整一个参数,如恒温器。49

旧金山的Mytra公司正在开发另一种形式的智能工 厂,它简化了移动和存储仓库材料的人工过程。该 公司开发了一种完全模块化的

由钢"立方体"组成的存储系统,可以

求相	关领域的进展			
	可再生能源	节能应用	硬件改进	
人为	跟踪Al的能源成本 云上	运用人工智能发掘潜力 节能	监测人工智能的技术进 步	
施	寻求创新 可持续发展解决方案	优化排放跟踪 和数据使用	投资新的节能芯片	

以任何支持3D移动和存储材料的形状组装在一起,由机器人操纵并通过软件优化。50 Mytra的首席执行官Chris Walti认为,这种模块化方法为许多不可预测的未来应用打开了自动化之门:"这是首批在3D空间移动物质的通用计算机之一。"51

如上所述,这需要大型工业机器人完成相对简单的任务,但更复杂的任务需要"更智能"的机械肌肉,可以像人类一样移动。以Figure Al在南卡罗来纳州Spartanburg的宝马工厂测试的人形机器人为例。55自主机器人通过结合计算机视觉、神经网络和反复试验,成功地组装了汽车底盘的部件。56

Walti认为,将机器人技术应用于相对受限的问题有巨大的潜力,例如在网格中移动材料或直线驾驶车辆。52直到现在,在许多情况下,很难找到一个好的机器人。可持续性、安全性和地缘政治都是这种技术的突出关注点。这是在我们甚至集合了之前提到的基础设施,包括数据、网络架构和芯片可用性,以使这样的飞跃成为可能之后。正所谓"硬件是,成使这样的飞跃成为可能之后。正所谓"硬件是,以使这样的飞跃成为可能之后。正所谓"硬件是,以使这样的飞跃成为可能之后。正所谓"硬件是,以使这样的飞跃成为可能之后。正所谓"硬件是,以使这样的飞跃成为可能之后。正所谓"硬件是,以使这样的飞跃成为可能会彻底改变制造业和其他体力劳动的性质。这种潜力直接导致了人形机器人一一动态的、不断学习的、能够做我们所做的事情的机器人。

作为这一领域最遥远的进步之星,我们可能会预计 人形机器人会执行各种各样的任务,从清理下水道 到在医院房间之间运送材料,甚至进行手术。57正 如人工智能目前正在改变知识工作一样,机器人的 增加可能会极大地影响制造业和其他领域的体力工 作和流程。在…里

在这两种情况下,公司应该确保找到让人类和机器 更有效地合作的方法,而不是单独合作。由机器人 解决的劳动力短缺问题将会解放人类的时间,让他 们从事更多我们擅长的独特的创造性和复杂的任务

正如作者Joanna Maciejewska敏锐地指出的那样 ,"我希望AI为我洗衣服和洗碗,以便我可以进行 艺术和写作,而不是让AI进行艺术和写作,以便我 可以洗衣服和洗碗。"58

经济学家和企业都认为,人口老龄化和劳动力短缺需要加大对机器人和自动化的投资。54在许多情况下,

Endnotes

- Jon Quast, "Artificial intelligence (AI) juggernaut Nvidia is one of the world's most valuable companies. Here's what investors should know," *The Motley Fool*, June 22, 2024.
- Duncan Stewart et al., "Gen AI chip demand fans a semi tailwind ... for now," *Deloitte Insights*, November 29, 2023; World Semiconductor Trade Statistics (WSTS), "Semiconductor market forecast spring 2023," June 6, 2023.
- 3. Rob Enderle, "AMD enters AI PC race, closes Microsoft Copilot+ launch gaps," *TechNews World*, July 15, 2024; Saba Prasla, "Meet the future of computing with AI PCs," *Dell Blog*, May 31, 2024; HP, "HP unveils industry's largest portfolio of AI PCs," press release, March 7, 2024.
- **4.** Taiba Jafari et al., "Projecting the electricity demand growth of generative AI large language models in the US," Center on Global Energy Policy, July 17, 2024.
- 5. International Energy Agency, Electricity 2024: Analysis and forecast to 2026, revised May 2024.
- **6.** Deloitte, "Powering artificial intelligence," accessed November 18, 2024.
- **7.** Constellation, "Constellation to launch Crane Clean Energy Center, restoring jobs and carbon-free power to the grid," press release, September 20, 2024.
- **8.** Shira Ovide, "This \$400 toothbrush is peak AI mania," *The Washington Post*, April 5, 2024; David Niewolny, "Boom in AI-enabled medical devices transforms healthcare," *NVIDIA Blog*, March 26, 2024.
- **9.** Marc Andreessen, "Why software is eating the world," Andreessen Horowitz, August 20, 2011.
- **10.** John Thornhill, "How hardware is (still) eating the world," *The Financial Times*, February 15, 2024.
- Stewart et al., "Gen AI chip demand fans a semi tailwind ... for now."
- **12.** Ibid.
- **13.** NVIDIA, "NVIDIA hopper GPUs expand reach as demand for AI grows," press release, March 21, 2023.
- **14.** Databricks, *State of data* + *AI*, accessed October 2024.
- **15.** John Thornhill, "The likely winners of the generative AI gold rush," *The Financial Times*, May 11, 2023.
- **16.** Matt Ashare, "Nvidia sustains triple-digit revenue growth amid AI building boom," *CIO Dive*, August 29, 2024; NVIDIA, "Nvidia (NVDA) Q2 2025 earnings call transcript," *The Motley Fool*, August 28, 2024; Dean Takahashi, "Nvidia unveils next-gen Blackwell GPUs with 25X lower costs and energy consumption," *VentureBeat*, March 18, 2024.
- **17.** Matt Ashare, "Big tech banks on AI boom as infrastructure spending heads for trillion-dollar mark," *CIO Dive*, August 5, 2024; Dell'Oro Group, "Worldwide data center capex to grow at a 24 percent CAGR by 2028," press release, August 1, 2024.
- **18.** Evan Halper, "Amid explosive demand, America is running out of power," *The Washington Post*, March 7, 2024.
- **19.** Chris Hoffman, "What the heck is an NPU, anyway? Here's an explainer on AI chips," *PCWorld*, September 18, 2024.
- **20.** Anshel Sag, "At the heart of the AI PC battle lies the NPU," *Forbes*, April 29, 2024.

- **21.** Phone interview with Vivek Mohindra, senior vice president of corporate strategy, Dell Technologies, October 11, 2024.
- **22.** Christie Simons et al., 2024 global semiconductor industry outlook, Deloitte, 2024.
- **23.** Aditya Agrawal, "The convergence of edge computing and 5G," Control Engineering, August 7, 2023; Baris Sarer et al., "AI and the evolving consumer device ecosystem," Deloitte's CIO *Journal* for *The Wall Street Journal*, April 24, 2024.
- **24.** Matthew S. Smith, "When AI unplugs, all bets are off," *IEEE Spectrum*, December 1, 2023.
- **25.** Phone interview with Vivek Mohindra, senior vice president of corporate strategy, Dell Technologies, October 11, 2024.
- **26.** Patrick Seitz, "AI PCs are here. Let the upgrades begin, computer makers say," *Investor's Business Daily*, July 5, 2024; Sam Reynolds, "AI-enabled PCs will drive PC sales growth in 2024, say research firms," *Computerworld*, January 11, 2024.
- **27.** Phil Solis et al., "The future of next-gen AI smartphones," IDC, February 19, 2024.
- **28.** Phone interview with Alex Thatcher, senior director of AI PC experiences and cloud clients at HP, October 4, 2024.
- **29.** Rob Waugh, "Assessing Apple Intelligence: Is new 'on-device' AI smart enough for the enterprise?," *The Stack*, September 12, 2024; Matt O'Brien, "Microsoft's new AI-enabled laptops will have a 'photographic memory' of your virtual activity," *Fortune*, May 20, 2024. Tech Trends is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Inc.
- **30.** Luke Larsen, "AMD just won the AI arms race," *Digital Trends*, June 3, 2024.
- **31.** David Linthicum, "Learning cloud cost management the hard way," *InfoWorld*, July 16, 2024.
- **32.** Tobias Mann, "Big Cloud deploys thousands of GPUs for AI yet most appear under-utilized," *The Register*, January 15, 2024.
- **33.** Phone interview with Alex Thatcher, senior director of AI PC experiences and cloud clients at HP, October 4, 2024.
- **34.** Christine Mui, "Welcome to the global 'AI sovereignty' race," *Politico*, September 18, 2024.
- **35.** Ibid
- **36.** Bobby Clay, "Graphics processing service providers step up to meet demand for cloud resources," *S&P Global Market Intelligence*, July 19, 2024.
- **37.** Goldman Sachs, *Top of Mind* 129, June 25, 2024.
- **38.** Cindy Gordon, "ChatGPT and generative AI innovations are creating sustainability havoc," *Forbes*, March 12, 2024.
- **39.** Molly Flanagan, "AI and environmental challenges," Environmental Innovations Initiative, accessed October 2024; Deloitte, "Powering artificial intelligence."
- **40.** Jennifer Hiller and Sebastian Herrera, "Tech industry wants to lock up nuclear power for AI," *The Wall Street Journal*, July 1, 2024.
- **41.** Robert Scheier, "4 paths to sustainable AI," CIO, January 31, 2024.
- **42.** Tom Dotan and Asa Fitch, "Why the AI industry's thirst for new data centers can't be satisfied," *The Wall Street Journal*, April 24, 2024.

43.维多利亚·马斯特森,"人工智能帮助应对气候变化的9种方式",世界经济论坛,2024年2月12日。
44.Kirk Ogunrinde,"英特尔正在使用激光来帮助满足数据中心的人工智能需求",《福布斯》,2024年6月26日。
45.里克·梅里特,"什么是NVLink? ,"英伟达,2023年3月6日。
46.Garry Kranz,"6G是什么?6G网络和技术概述",技术目标,是后更新于2023年1月,47.史带文·罗森布什,人工智能将推动科技变革基础设施",华尔街日报,2024年9月11日。48.与吉德·艾哈迈德,"传感器与人工智能的融合改变了智能制造时代",EE时报,2023年7月26日。49.Melissa Malec,"Al orchestration解释:2024年是什么,为什么&如何",HatchWorks AI,最后更新于2024年6月6日50.对Mytra首席执行官Chris Walti的电话采访,2024年10月11日

52.同上。 53.Sara Holoubek和Jessica Hibbard,"为什么硬件很难", Luminary Labs,2024年10月获得。

51.同上。

54.彼得·迪齐克斯,"研究:随着人口老龄化,自动化加速",麻 省理工学院新闻,2021年9月15日;汉斯·彼得·布罗诺莫,"谷 歌给人工智能一个机器人的7年使命"

体,《连线》,2024年9月10日。……55.宝马集团,在宝马集团斯帕坦堡工厂成功测试人形机器人",新闻稿,2024年8月6日。56.同上。

57.维克多·多奇诺夫,"下水道机器人大军可以保持我们的管道清洁,但他们需要学习交流,"对话,2021年1月26日;凯斯西储大学,"5个医疗机器人在医疗保健中发挥作用",在线工程博客,2024年10月访问;国家生物医学成像和生物工程研究所(NIBIB),"机器人在最少的人类帮助下进行软组织手术",新闻稿,2022年4月20日。

58. Joanna Maciejewska在X上的帖子, 2024年3月29日。

继续对话

行业领导地位

尼廷·米塔尔 全球铝领导者|负责人| LLP德勤咨询公司

尼廷·米塔尔是LLP德勤咨询公司的负责人。他目前担任美国人工智能(AI)战略增长咨询负责人以及全球战略、分析和M&A负责人。他是2019年纽约人工智能峰会人工智能创新者奖的获得者。他专门建议客户通过数据和认知驱动的转换来实现竞争优势,这种转换促进了放大的智能,并使我们的客户能够在中断之前做出战略选择和转换。

在他的职业生涯中,米塔尔一直是全球客户值得信赖的顾问, 并在多个行业领域工作过。

他的主要工作重点是与生命科学和医疗保健客户合作,实施 促进组织智能的大规模数据计划,以及使用高级分析和人工 智能来推动见解和业务战略。 阿卜迪·古达齐 美国企业绩效组合领导者|委托人+1714 9131091 | agoodarzi@deloitte.com

Abdi Goodarzi是LLP德勤咨询公司的负责人,负责德勤的企业绩效(EP)产品组合。这六个产品组合为各种企业职能提供战略、实施和运营服务,从端到端业务和IT转型,到数字供应链优化、制造和产品战略以及采购即服务,再到全球金融、共享服务、规划、ITSM以及全面的AMS和BPO。该产品组合提供了SAP、Oracle、Workday Financials和Infor等许多ERP平台的能力,此外还有ServiceNow、Anaplan、Ariba和Coupa,以及Nuvolo等房地产解决方案,以及PLM、规划和履行,以及Siemens、PTC、O9、OMP和IBP等工程解决方案。

感谢

非常感谢德勤为我们的计算章节研究做出贡献的众多学科带头人:Lou DiLorenzo、Abdi Goodarzi、Lena La、Nitin Mittal、Manish Rajendran、Jim Rowan和巴里斯·萨勒。

技术商业

它,被放大了:人工智能提升了技 术功能的范围

随着技术功能从领先的数字化转型转向领先的人工智能转型,具有前瞻性思维的领导者 正在利用这一机会重新定义IT的未来

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和阿比吉特·拉维努塔拉

关于人工智能彻底改变商业用例及结果的潜力,已经说了很多,包括在《技术趋势》的页面中。 在软件工程的端到端生命周期和更广泛的信息技术业务中,这一点最为真实,因为generative Al拥有编写代码、测试软件和增强技术人才的能力。

德勤的研究表明,处于这种组织变革前沿的科技公司已经准备好实现这些好处:他们认为生成式人工智能正在改变他们的组织或将在明年改变他们的组织的可能性是更保守的同行的两倍。1

我们在Tech Trends 2024的一篇文章中写道,企业需要重组他们的开发人员体验,以帮助IT团队实现最佳结果。现在,人工智能炒作周期已经更加关注技术功能的工作方式。它长期以来一直是企业数字化转型的灯塔,但它现在必须承担AI转型。高瞻远瞩的IT领导者正在利用当前这个千载难逢的机会来重新定义角色和职责,设定投资优先级,并传达价值预期。更重要的是,通过扮演这一先锋角色,首席信息官可以帮助激励其他技术领导者将人工智能转型付诸实践。

在企业追求精益IT和一切即服务产品多年后,人工智能正在引发远离虚拟化和紧缩预算的转变。 Gartner预测"全球IT支出总额预计将达到52.6亿美元 2024年万亿,比2023年增长7.5%。"2

正如我们在"硬件正在吞噬世界"中所讨论的那样,硬件和基础设施正在发生变化,企业IT支出和运营可能会相应地发生变化。

随着传统的人工智能和生成式人工智能变得越来越有能力和无处不在,技术交付的每个阶段都可能从负责的人转向循环中的人。在这种情况发生之前,组织需要一个明确的策略。根据德勤的分析,在未来18到24个月内,IT领导者应该在五个关键支柱上规划人工智能转型:工程、人才、云金融运营(FinOps)、基础设施和网络风险。

这一趋势可能会在未来十年带来一种新型的精益 IT。如果商业职能部门看到越来越多的公民开发 者或数字代理人能够随心所欲地开发应用程序, 那么IT职能部门的角色可能会从构建和维护转变 为协调和创新。在这种情况下,人工智能可能不 仅是秘密的,正如我们在今年报告的导言中所指 出的那样,而且还可能公开出现在董事会会议室 ,监督符合人类需求的技术运营。

现在:聚焦IT--以及更高的支出

多年来,IT部门一直面临着精简庞大的云支出和 控制成本的压力。然而,自2020年以来,由于对 协作工具的压抑需求以及疫情时代对数字化的强 调,对技术的投资一直在增加。3根据 to Deloitte research, from 2020 to 2022, the global average technology budget as a percentage of revenue jumped from 4.25% to 5.49%, an increase that approximately doubled the previous revenue change from 2018 to 2020.⁴ And in 2024, US companies' average budget for digital transformation as a percentage of revenue is 7.5%, with 5.4% coming from the IT budget.⁵

As demand for AI sparks another increase in spending, the finding from Deloitte's 2023 Global Technology Leadership Study continues to ring true: Technology is the business, and tech spend is increasing as a result.

Today, enterprises are grappling with the new relevance of hardware, data management, and digitization in ramping up their usage of AI and realizing its value potential. In Deloitte's Q2 State of Generative AI in the Enterprise report, businesses that rated themselves as having "very high" levels of expertise in generative AI were increasing their investment in hardware and cloud consumption much more than the average enterprise. Overall, 75% of organizations surveyed have increased their investments around data-life-cycle management due to generative AI.

These figures point to a common theme: To realize the highest impact from gen AI, enterprises likely need to accelerate their cloud and data modernization efforts. AI has the potential to deliver efficiencies in cost, innovation, and a host of other areas, but the first step to accruing these benefits is for businesses to focus on making the right tech investments. Because of these crucial investment strategies, the spotlight is on tech leaders who are paving the way.

According to Deloitte research, over 60% of US-based technology leaders now report directly to their chief executives, an increase of more than 10 percentage points since 2020. This is a testament to the tech leader's increased importance in setting the AI strategy rather than simply enabling it. Far from a cost center, IT is increasingly being seen as a differentiator in the AI age, as CEOs, following market trends, are keen on staying abreast of AI's adoption in their enterprise. 10

John Marcante, former global CIO of Vanguard and US CIO-in-residence at Deloitte, believes AI will fundamentally change the role of IT. He says, "The technology organization will be leaner, but have a wider purview.

It will be more integrated with the business than ever. AI is moving fast, and centralization is a good way to ensure organizational speed and focus."¹¹

As IT gears up for the opportunity presented by AI—perhaps the opportunity that many tech leaders and employees have waited for—changes are already underway in how the technology function organizes itself and executes work. The stakes are high, and IT is due for a makeover.

New: An Al boost for IT

Over the next 18 to 24 months, the nature of the IT function is likely to change as enterprises increasingly employ generative AI. Deloitte's foresight analysis suggests that, by 2027, even in the most conservative scenario, gen AI will be embedded into every company's digital product or software footprint (figure 1), as we discuss across five key pillars.¹²

Engineering

In the traditional software development life cycle, manual testing, inexperienced developers, and disparate tool environments can lead to inefficiencies, as we've discussed in prior Tech Trends. Fortunately, AI is already having an impact on these areas. AI-assisted code generation, automated testing, and rapid data analytics all save developers more time for innovation and feature development. The productivity gain from coding alone is estimated to be worth US\$12 billion in the United States alone.¹³

At Google, AI tools are being rolled out internally to developers. In a recent earnings call, CEO Sundar Pichai said that around 25 percent of the new code at the technology giant is developed using AI. Shivani Govil, senior director of product management for developer products, believes that "AI can transform how engineering teams work, leading to more capacity to innovate, less toil, and higher developer satisfaction. Google's approach is to bring AI to our users and meet them where they are—by bringing the technology into products and tools that developers use every day to support them in their work. Over time, we can create even tighter alignment between the code and business requirements, allowing faster feedback loops, improved product market fit, and

生成人工智能如何改变IT工作方式

在接下来的18到24个月里,随着生成式人工智能越来越深入到工作方式中,企业的技术团队可能会经历巨大的改进。德勤的前瞻分析表明,到2027年,即使在最保守的情况下,gen Al也将嵌入每个公司的数字产品/软件足迹。随着我们从IT中Al的当前状态转移到目标状态,代码审查、基础架构配置和预算管理等手动且耗时的流程可以实现自动化并得到改进。

	问题是	必要的改变	建议采取的行动
工程	传统软件开发生命周期 的手动、低效方面	从编写代码转移到定义 架构、审查代码和编排功 能	技术领导者应该期待人在回路中的代码生成和审查成为标准
才能	高管们很难招聘到 合适的背景,被迫推迟项目	人工智能可以生成丰富的学习 和发展媒体以及文档来提升人 才技能	技术领导者应该实施定期的授权学习建议和个性化,作为一种新的工作方式
云财务运营	支出失控在云中很常见,因为只 需点击一下鼠标就可以调配资源	人工成本分析,模式 检测和资源分配可以以新的速度 优化IT支出	领导者应始终如一地应用人工智能来帮助it部门赚取成本并优化成本
基础设施	将近一半的企业在处理 手动执行安全性、合规性和服务管理 等任务	自动化资源分配,预测 维护和异常检测可以彻底改变IT系统	領导者应该致力于建立一个能够 通过人工智能根据需要自我修复 的IT基础设施
计算机的	生殖人工智能和数字代理为不良行为者打 开了比以往更多的攻击面	自动化数据屏蔽、事件 响应和策略生成可以优化网络安 全响应	企业应采取措施,通过新技术或 流程进一步认证数据和数字媒体

来源:德勤研究和分析。

更好地与业务成果保持一致。"14在另一个例子中,一家医疗保健公司使用COBOL代码辅助功能,使一名没有编程语言经验的初级开发人员能够生成准确率高达95%的解释文件。15

正如德勤(Deloitte)最近在一篇关于人工智能时代的 工程的文章中所述,开发人员的角色可能会从编写 代码转向定义架构、审查代码,以及通过情境化的 提示工程来编排功能。技术领导者应该预见到

在人工智能采用的未来几年中,人在回路中的代码 生成和审查将成为标准。16

Talent

Technology executives surveyed by Deloitte last year noted that they struggle to hire workers with critical IT backgrounds in security, machine learning, and software architecture, and are forced to delay projects with financial backing due to a shortage of appropriately skilled talent.¹⁷ As AI becomes the newest skill in demand, many companies may not even be able to find all the talent they need, leading to a hiring gap wherein nearly 50% of AI-related positions cannot be filled.¹⁸

As a result, tech leaders should focus on upskilling their own talent, another area where AI can help. Consider the potential benefits of AI-powered skills gap analyses and recommendations, personalized learning paths, and virtual tutors for on-demand learning. Bayer, the life sciences company, has used generative AI to summarize procedural documents and generate rich media such as animation for e-learning. Along the same lines, AI could generate documentation to help a new developer understand a legacy technology, and then create an associated learning podcast and exam for that same developer.

At Google, developers thrive on hands-on experience and problem-solving, so leaders are keen to provide AI learning and tools (like coding assistants) that meet developers where they are on their learning journey. "We can use AI to enhance learning, in context with emerging technologies, in ways that anticipate and support the rapidly changing skills and knowledge required to adapt to them," says Sara Ortloff, senior director of developer experience at Google.²⁰

As automation increases, tech talent would take an oversight role and enjoy more capacity to focus on innovation that can improve the bottom line (as we wrote about last year). This could help attract talent since, according to Deloitte research, the biggest incentive that attracts tech talent to new opportunities is the work they would do in the role.²¹

Cloud financial operations

Runaway spending became a common problem in the cloud era when resources could be provisioned with a click. Hyperscalers have offered data and tooling for finance teams and CIOs to keep better track of their team's cloud usage, but many of these FinOps tools still

require manual budgeting and offer limited visibility across disparate systems.²² The power of AI enables organizations to be more informed, proactive, and effective with their financial management. Real-time cost analysis, as well as robust pattern detection and resource allocation across systems, can optimize IT spending at a new speed.²³ AI can help enterprises identify more cost-saving opportunities through better predictions and tracking.²⁴ All of this is necessary because AI may significantly drive up cloud costs for large companies in the coming years. Applying AI to FinOps can help justify the investments in AI and optimize costs elsewhere while AI demand increases.²⁵

Infrastructure

Across the very broad scope of IT infrastructure, from toolchain to service management, organizations haven't seen as much automation as they want. Just a few years ago, studies estimated that nearly half of large enterprises were handling key tasks like security, compliance, and service management on a completely manual basis. ²⁶ The missing ingredient? Automation that can learn, improve, and react to the changing demands of a business. Now, that's possible.

Automated resource allocation, predictive maintenance, and anomaly detection could all be possible in a system that's set up to natively understand its own real-time status and then act.²⁷ This emerging view of IT is known as *autonomic*, in reference to the human body's autonomic nervous system that regulates its heart rate and breath, and adjusts dynamically to internal and external stimuli.²⁸ As mentioned above, such a system would enable the change from human in charge to human in the loop, as infrastructure takes care of itself and surfaces only the issues that require human intervention. That's why companies like eBay are already leveraging generative AI to scale their infrastructure and sort through troves of customer data, potentially leading to impactful changes to their platform.²⁹

Cyber

Although AI may make many aspects of IT simpler or more efficient, it certainly introduces more complexity to cyber risk. As we wrote about last year, generative AI and synthetic media open up more attack surfaces than ever for phishing, deepfakes, prompt injection, and

随着人工智能的激增和数字代理成为最新的企业对企业的代表,这些问题可能会变得更加严重。企业应采取措施进行数据认证,例如安全公司SWEAR,该公司率先通过区块链验证数字媒体。31数据屏蔽、事件响应和自动策略生成也是可以应用生成式人工智能来优化网络安全响应和防御攻击的领域。32

自己的解决方案。虽然IT即服务可能并不新鲜,但以前的理解是,公司IT基础设施的几个方面将移交给新的供应商。35展望未来,该供应商可能会被每个组织内部培训的安全AI代理取代。

最后,随着技术团队逐渐适应上述变化和挑战,许 多人将把注意力转移到人工智能可以实现的创新、 敏捷性和增长上。团队可以简化他们的IT工作流程 ,减少人工干预或外包的需求,使IT部门能够专注 于更高价值的活动。33事实上,整个IT资源的重新 分配

有可能发生。正如Freeplay的首席执行官伊恩·凯恩斯所说注意到,"正如任何重大的平台转移一样,成功的企业将是那些能够重新思考和适应他们的工作方式并为新时代构建软件的企业。"34

接下来:IT本身即服务

对于许多IT团队来说,当前的时刻就像所有人都在 甲板上拉响警报,产品经理、领域专家和业务部门 负责人正在深入人工智能的细节,以证明概念的工 作证据。如果赌注有回报,公司能够利用这项新技 术提高利润,IT可能会完成从成本中心和推动者到 真正的竞争优势的转变。到那时,首席信息官的角 色和他们对科技产业的管理可能会发生巨大的变化

想象一下未来十年的场景,IT从集中控制的职能转 变为创新领导者,提供可重用的代码块和平台,业 务部门可以使用它们来开发他们的 从这个意义上来说,它本身可以成为通过在线门户运行的服务,其中低代码或无代码技术与高级人工智能的结合允许非技术用户创建和运行应用程序。36例如,首席架构师的角色可能与由数字代理执行的许多传统任务非常不同。就像今天点击一下就可以打开云计算模块一样,在未来的5到10年里,点击一下就可以使用整个应用程序。持续的技术学习和流畅性将在整个企业中变得至关重要,而不仅仅是在IT部门,因为员工和公民开发人员将被鼓励适应最新的技术。信任和安全责任也将扩大,技术团队将人类留在环路中,以审查数据隐私、网络安全和道德人工智能实践。

虽然人工智能的进步可能会对IT的未来角色提出质疑,但一旦它嵌入到企业的每个角落,它实际上提升了企业的技术功能。随着技术和人工智能在企业中变得更加重要,精明的技术领导者将需要发展一系列技能。这些技能包括旅程和流程知识、计划和产品管理、业务发展、信任和合规专业知识以及生态系统管理(包括人工智能工具和共享能力)。为了推动变革管理,领导者可能还需要扮演企业的教育者和人工智能的传播者的新角色。

马坎特说,"人工智能的能力可能会为商业大众化 ,并刺激创新,但技术领导者必须推动议程。必须 有一套指导原则和目标,人们可以在全球范围内指 出,以推动他们的企业向前发展。"37

1.法鲁克·穆拉托维奇,邓肯·斯图尔特和普拉尚·拉曼, "科技公 司引领生成式人工智能:代码值得吗

"德勤洞察,2024年8月2日。 ,"Gartner预测全球IT支出将增长2。 Gartner,

2024年7.5%,"新闻稿,2024年7月16日。 Lou DiLorenzo Jr .等人,"从技术投资到影响:3。分 配资本和阐明价值的策略",德勤洞察,2023年9月13日

4.同上。

5.蒂姆·史密斯等人,"聚焦基础:如何数字化 转型投资在2024年发生了变化,"德勤洞察

2024年10月14日。Nitin Mittal等人,"现在决定 下一步:真正了解生成性人工智能",德勤《企业 Q2报告》中的生成性人工智能状态,2024年4月 7.同上。

8.伊丽莎白·沙利文(编辑。) "人工智能投资越来越多地延伸到人 工智能本身之外, "德勤洞察杂志第33期, 2024年9月26日

9.Belle Lin, "Al将首席信息官置于聚光灯下,就在首席执行 官旁边",华尔街日报,2024年6月12日。 10.Benjamin Finzi等人,"首席执行官在扩大生成式人工 智能规模时需要扮演的三个角色",德勤,2024年。~~wv 11.约翰·马坎特(John Marcante),前Vanguard全球首席信 息官,美国驻德勤首席信息官,德勤采访,2024年10月8日 12.Laura Shact等人,"21世纪生成式人工智能的四个未来 企业:战略弹性和适应性的情景规划",德勤洞察 2024年10月25日。 拉托维奇等人,"科技公司引领生成式人工智能。"

13.穆拉托维奇等人,

14.开发商高级总监兼项目经理Shivani Govil 工具,谷歌,德勤采访,2024年9月4日。

15.法鲁克·穆拉托维奇等人,"组织如何进行工程 gen AI时代的优质软件? , "德勤洞察" , 2024年10月28日。

16.同上。 17.大卫·贾维斯, "尽管该行业裁员,但技术人才仍然很难找到,"德勤 洞察, 2023年8月14日。 18.马克·丹格罗,"面对未知法规和进步所需的人工智能 技能", 汤森路透, 2023年12月6日。

19.唐纳德·h·泰勒, 2024年全球情绪调查, 2月 2024. 20.Sara Ortloff,谷歌开发者用户体验高级总监,德勤采访,9月 4日。2024. 21.Linda Quaranto等人,"赢得FSI组织的技术人 才之战",德勤,2022年2月,~~~··· 22.David Linthicum,"云计算是怎么回事?"," InfoWorld的云计算博客AI:4省衙新和成果效率",首席 信息官,2024年9月24日。24.Fred Delombaerde, "AI和 LLMs会改变FinOps吗?," 视频,FinOps基金会,2024年5月20日。 25.Linthicum,"云计算是怎么回事?" 26.尼古拉斯·迪莫塔基斯,"这是肮脏的小秘密:手工流 程仍然盛行,"福布斯,2021年2月25日。 27.迈克尔·纳皮,"超越自主IT,推动自主业务",科学逻辑: 博客科2024年5月15里计算,2024年10月访问。 29.约翰·凯尔, "易贝如何利用生成式人工智能提高员工和在 线卖家的工作效率",《财富》,2024年8月14日。 30.Mike Bechtel和Bill Briggs,"捍卫现实:合成媒体 t的真相"。德勒洞察我的观告解果是造 假问题",德勒洞察,2024年8月7日。 32.帕洛阿尔托网络,"网络安全中的生成式人工智能是什 多?Ilya Ganazachuk,024年19星28日荷涅米来5年内 改变IT服务行业",《福布斯》,2024年5月16日。 34.伊恩·凯恩斯,"生成式人工智能迫使人们重新思考软件 开发流程",德勤洞察,2024年7月1日。 35.佳能,"为什么'即服务'是IT团队的未来的4个理由" 2024年10月访问。 36.CloudBlue,"什么是IT即服务?" 2022年11月28日; Isaac Sacolick,"使用低代码工具和平台的7种创新方法", 信息世界,2024年4月22日。 37. 2010年10月8日,对Vanguard前全球首席信息官、德 勤美国常驻首席信息官John Marcante的电话采访。

mpirion. At elevant the roach rand remit) of the teel function

继续对话

行业领导地位

蒂姆·史密斯 技术战略和业务转型负责人|负责人|美国 监测德勤|德勤咨询LLP+1 212 313 2979 | timsmith6@deloitte.com

Tim Smith是德勤LLP咨询公司的负责人,并担任Monitor Deloitte的技术战略和业务转型实践的美国负责人。他在美国和国外拥有20多年的跨部门技术咨询和实施经验。Tim与客户合作,通过跨运营模式、架构和生态系统的集成选择来释放技术产业的价值。蒂姆居住在纽约市。他获得了弗吉尼亚大学的系统工程学士学位和伦敦商学院的MBA学位。

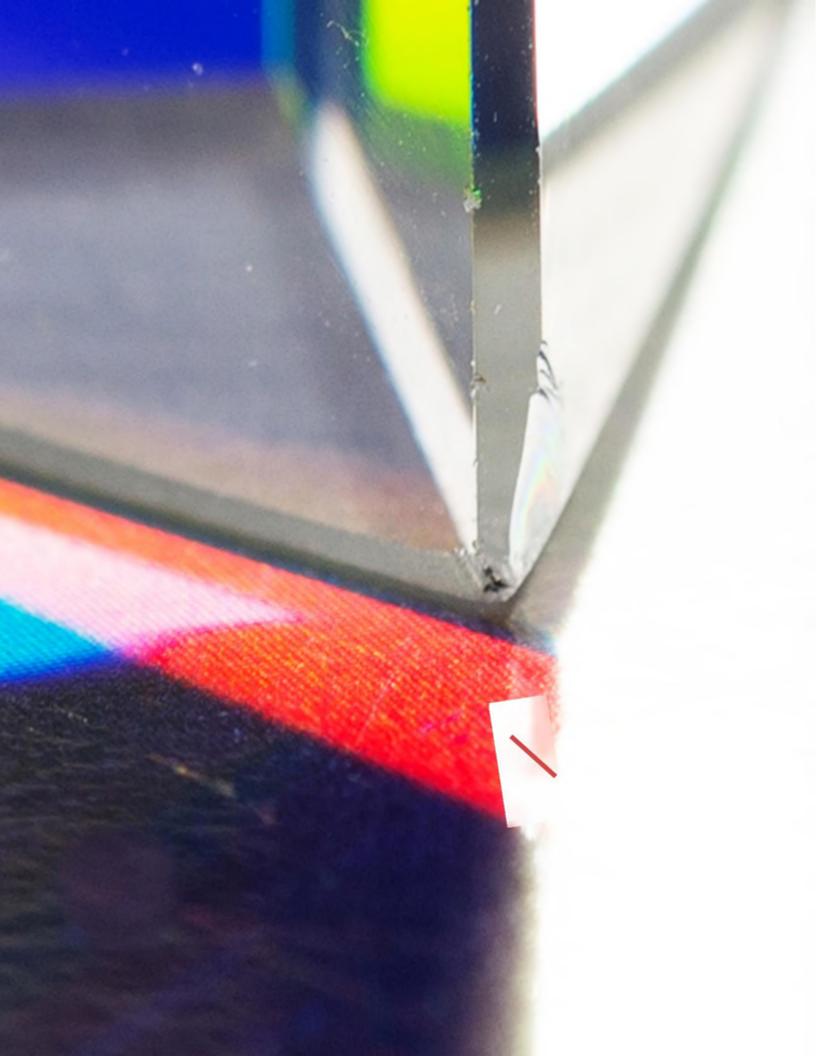
安贾利·谢赫

美国首席信息官项目体验总监|董事总经理| LLP德勤咨询公司

+1714 436 7237 | anjalishaikh@deloitte.com

Anjali Shaikh是德勤技术高管项目的体验总监,担任首席信息官、首席技术官和其他技术领导者的顾问,并为项目 开发提供战略指导。谢赫领导着一个由经验丰富的从业者 组成的团队,负责创造定制化的体验,开发有价值的见解 ,帮助高管应对复杂的挑战;塑造技术议程;建立并领导 有效的团队;并擅长于他们的

职业生涯。


小卢·迪洛伦佐

首席|人工智能和数据战略实践主管|美国首席信息官和首席数据官项目,国家领导人| Idilorenzojr@deloitte. com德勤咨询LLP +1 612 397 4000

Lou DiLorenzo担任德勤咨询公司人工智能和数据战略实践以及德勤美国首席信息官和CDAO高管加速器项目的全国负责人。他是德勤(Deloitte)生成式人工智能实践领导团队的成员,负责生成式人工智能孵化器。他拥有超过20年的跨部门运营、创业和咨询经验,在召集关键利益相关方帮助领导变革、开发新能力和交付积极的财务成果方面有着成功的记录。此前,DiLorenzo曾担任一家消费者健康保险初创公司的首席执行官,并担任嘉吉食品配料和生物工业部门的全球首席信息官。他经常向主要出版物投稿,并主持播客Techfluential。

感谢

非常感谢德勤的许多学科带头人,他们为我们的技术业务章节的研究做出了贡献:Kenny Brown、Lou DiLorenzo、Diana Kearns-Manolatos、Siva Muthu、Chris Purpura、Anjali Shaikh和Tim Smith。

新数学:在量子时代解决密码学

量子计算机很可能对今天的加密实践构成严重威胁。更新加密从未如此紧迫。

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和艾德·伯恩斯

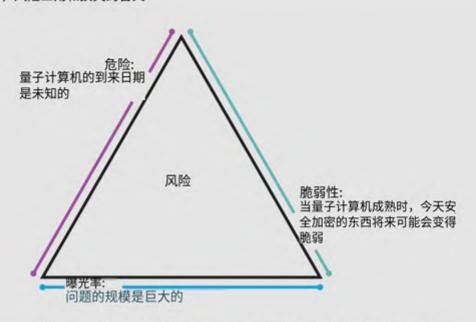
网络安全专家已经有很多想法了。从普通的社会 工程黑客到人工智能生成的内容带来的新威胁

不缺乏直接的关注。但在关注紧急情况的同时,他们可能忽略了一个重要的威胁载体:一个与密码学相关的量子计算机(CRQC)有朝一日能够破解企业所依赖的大部分当前公钥密码的潜在风险。一旦密码被破解,它将破坏建立在线会话、验证交易和确保用户身份的过程。

让我们将这种风险与2000年问题的历史反应进行对比,在2000年问题中,企业看到了迫在眉睫的风险,并随着时间的推移解决了这一问题,从特定的时间开始追溯,以避免更大的影响。1 CRQC的潜在风险基本上是相反的情况:影响预计会更加广泛,但这种与密码相关的量子计算机何时可用尚不可知。准备CRQCs通常被认为是非常重要的,但由于未知的时间表,其紧迫性通常较低。这使得组织倾向于推迟为量子计算机的到来做好网络安全准备的必要活动。

"除非它在这里,否则人们会说,'是的,我们会实现它,或者供应商会为我实现它。网络安全公司Quantropi的首席技术官迈克·雷丁(Mike Redding)说:"我有太多的事情要做,而预算却太少。他们只是在拖延时间。"

这种自满的心态可能会滋生灾难,因为问题不是量子计算机是否会到来,而是什么时候到来。大多数专家认为CRQC出现的确切时间范围与加密无关。人们普遍认为,未来5到10年内可能会出现一个,但是组织需要多长时间来更新他们的基础架构和第三方依赖呢? 八年? 十年? 十二个?


鉴于完成之前的加密升级需要多长时间,例如从加密哈希算法SHA1迁移到SHA2,现在开始是明智的。

在最近的一份报告中,美国管理和预算办公室表示,"CRQC很可能能够破解现在政府和私营部门普遍使用的一些加密形式。一个CRQC还不知道存在;然而,量子计算领域的稳步发展可能会在未来十年产生一个CRQC。相应地..联邦机构必须通过迁移到使用抗量子公钥密码系统来加强现有信息系统的防御。"3

这个问题的规模可能是巨大的,但幸运的是,现在有工具和专业知识来帮助企业解决这个问题。 美国国家标准与技术研究所(NIST)最近发布的后量子加密(PQC)算法标准可能有助于在问题变得昂贵之前解决问题,4世界各地的许多其他政府也在研究这个问题。5此外,重振网络思维可以让企业走上更安全的道路。

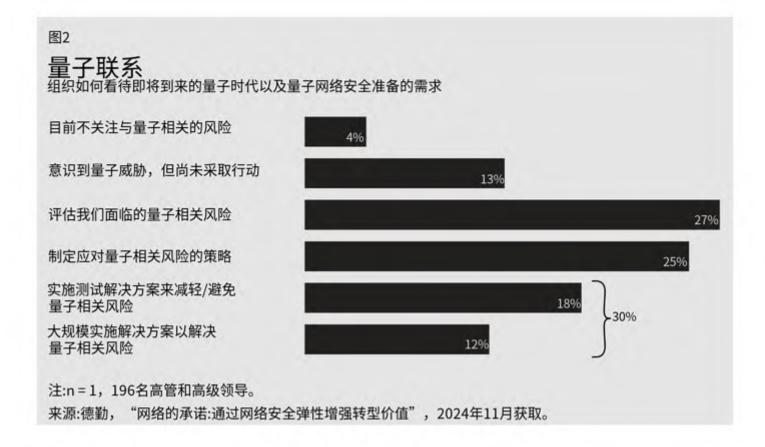
图1

如果不考虑三者中的每一个, 风险三角和损失的含义

来源:Colin Soutar,Itan Barmes,和Casper Stap,"不要让量子网络准备就绪的驱动程序退居二线!"德勤,2024年11月访问。

现在:密码学无处不在

网络安全团队的两个主要担忧是技术完整性和运营中断。6破坏支持数据加密的数字签名和密钥交换是这些担忧的核心。失去能够保证数字签名真实且不被更改的加密技术可能会对通信和交易的完整性造成重大打击。此外,失去安全传输信息的能力可能会颠覆大多数组织流程。


企业开始意识到量子计算给网络安全带来的风险

根据Deloitte的全球网络未来调查,52%的组织目前正在评估其暴露程度,并制定与量化相关的风险策略。另有30%的人表示,他们目前正在采取果断行动来实施这些风险的解决方案。

"这个问题的规模相当大,其对未来的影响迫在 眉睫。或许仍有时间来打击我们,但现在的积极 措施将有助于避免以后的危机。这是我们需要采 取的方向,"一家大型工业产品公司印度分部的 集团安全技术副总裁Gomeet Pant说。7

密码术现在如此普遍,以至于许多组织可能需要帮助来识别它出现的所有地方。它存在于他们拥有和管理的应用程序中,也存在于他们的合作伙伴和供应商系统中。要全面了解CRQC对加密技术造成的组织风险(图1),需要在广泛的基础设施、供应链和应用中采取行动。

用于数据保密的加密技术和用于维护电子邮件、 宏、电子文档和用户认证完整性的数字签名都将 受到威胁,破坏数字通信的完整性和真实性。8

更糟糕的是,企业的数据可能已经处于危险之中,尽管还没有CRQC。有一些迹象表明,坏人正在参与所谓的"现在收获,以后解密"的攻击——窃取加密数据,并希望在更成熟的量子计算机到来时将其解锁。组织的数据可能会继续受到威胁,直到他们升级到抗量子密码系统。

"我们很早就发现了对客户数据和金融部门的潜在威胁,这推动我们的突破性工作朝着量子就绪的方向发展,"摩根大通新兴技术安全组织主任雅西尔·纳瓦兹说。"我们的计划始于全面的加密库存,并扩展到开发PQC解决方案,通过加密敏捷流程实现安全现代化。"9

鉴于这些问题的规模,升级到量子安全加密可能需要数年时间,甚至可能需要十年或更长时间,我们很可能在这个范围内的某个时间看到与加密相关的量子计算机。10量子对加密带来的潜在威胁可能会感觉到,但现在是开始解决它的时候了(图2)。

"重要的是,组织现在就开始为量子计算带来的潜在威胁做准备,"NIST大学计算机安全部门负责人马特·肖尔说。"过渡到新的后量子加密标准的旅程将是漫长的,并且需要全球合作。NIST将继续开发新的后量子密码标准,并与行业和政府合作,鼓励它们的采用。"11

New: Upgrading to a quantum-safe future

There's good news, though. While upgrading cryptography to protect against the threat of quantum computers requires a comprehensive and widespread effort, given sufficient time, it should be a relatively straightforward operation.

Initial steps include establishing governance and policy, understanding current cryptographic exposure, assessing how best to prioritize remediation efforts across the infrastructure and supply chain, and building a comprehensive road map for internal updates and contractual mechanisms to ensure vendors meet the updated standards.

"The first step to reclaim control over decades of cryptographic sprawl across IT is to leverage modern cryptography management solutions, which empower organizations with critical observability and reporting capabilities," says Marc Manzano, general manager of cybersecurity group SandboxAQ.¹²

Once these initial steps are completed, organizations can begin updating encryption algorithms. In August 2024, NIST released new standards containing encryption algorithms that organizations can implement. The agency says these encryption methods should withstand attacks from quantum computers by changing how data is encrypted and decrypted.¹³

Current encryption practices encode data using complex math problems that outpace the computing power of even today's most powerful supercomputers. But quantum computers will likely be able to crack these problems quickly. The updated NIST standards move away from today's large-number-factoring math problems and leverage lattice and hash problems, which are sufficiently complex to bog down even quantum computers.¹⁴

Large tech companies are already beginning their transition. Following the release of NIST's updated standards, Apple updated its iMessage application to use quantum-secure encryption methods. Google announced that it implemented the new standards in its cryptography library and will use them in its Chrome web browser. BM, which has invested heavily in developing quantum computing technology, has integrated

postquantum cryptography into several of its platforms, and Microsoft has announced that it will add quantum-secure algorithms to its cryptographic library.¹⁷

In 2021, the National Cybersecurity Center of Excellence (NCCoE) at NIST started the Migration to PQC project. It has grown to over 40 collaborators, many of whom have cryptographic discovery and inventory tools with differing capabilities. The project demonstrates the use of these tools in a manner that will enable an organization to plan for their use. Other collaborators are focused on testing the PQC algorithms for use in protocols to understand their interoperability and performance as they prepare to implement PQC in their products.¹⁸

"An organization needs to understand where and how it uses cryptographic products, algorithms, and protocols to begin moving towards quantum-readiness," says Bill Newhouse, co-lead for the Migration to PQC project at the NCCoE. "Our project will demonstrate use of the tools and how the output of the tools supports risk analysis that will enable organizations to prioritize what it will migrate to PQC first." 19

Next: Leveraging postquantum cryptography to prepare for future threats

While enterprises upgrade their encryption practices, they should consider what else they might do. This can be likened to cleaning out the basement: What can be done to clean out the back corners no one has looked at in a decade? They will map out highly technical, low-level capabilities in core systems that haven't been assessed in years. Perhaps they will uncover other potential issues that can be addressed while upgrading cryptography, such as enhancing governance, improving key management processes, implementing a zero trust strategy, upgrading cryptography while modernizing legacy systems, or simply sunsetting tools that haven't been used in a while.

Organizations that engage in proper cyber hygiene are likely to strengthen their broader cyber and privacy practices. They will likely be more cautious about collecting and sharing anything other than strictly necessary data, establish more robust and accountable governance mechanisms, and continually assess trust between digital

些实践还通过在日常活动中建立安全习惯来强 化企业的防御。

企业应该考虑如何创建一组可重复的活动来保 护他们的加密系统免受各种类型的攻击和故障 , 这是一个称为加密弹性的概念。今天, 组织 需要为量子威胁载体做好准备,但明天,下一 个新风险将需要不同的方法。当新的威胁出现 时,安全团队不应该再经历一遍这整个过程, 相反,他们应该发展必要的力量来快速、无缝 地添加或替换加密功能。20

随着我们的数字生活和现实生活越来越紧密地 联系在一起,我们的友谊、声誉和资产正在经 历数字化转型。这些区域以数字方式传递,并 以密码方式保护。展望未来,信息、交易的隐 私性和完整性, 以及越来越多的人类状况将建 立在数字信任的基础上。保护

组件。除了抵御遥远的量子攻击威胁之外,这 密码术不仅仅是保护企业数据存储,它还保护 我们生活中日益敏感的领域。

> evolutionQ创始人兼首席执行官Michele Mosca表示: "随着我们在数字经济中对加密 技术的依赖日益增强,组织必须迅速采取行动 ,为受控过渡做好准备,以维护他们与客户和 "对于组织来说,制定 合作伙伴建立的信任。 量子安全路线图并与供应商合作以启动这一重 要转变至关重要。将最敏感信息的安全性放在 首位不仅是谨慎之举,也是至关重要的。"21

> 量子计算机可能会给一系列领域带来重大好处 , 如药物发现、金融建模和其他改善人们生活 的用例。这些潜在的好处不应该被随之而来的 安全挑战所掩盖。这就是为什么企业应该现在 就开始加强他们的防御,以便他们准备好收获 量子计算的潜在好处,而不会受到其风险的重 大干扰。

达米安·卡林顿,"千年虫是一种推动吗? ,"BBC新 闻在线,2000年1月4日。Mike Redding,

Quantropi首席技术官,德勤采访,2024年8月27日。 2.美国总统行政办公室,3号报告。

后量子密码术,2024年7月。

4.国家标准与技术研究所(NIST), "NIST发布前三个 最终确定的后量子加密标准",新闻稿,2024年8月 53天子 哈洲季岛含米的"季岛会出新闻稿, 2024年 4月11日。Emily Mossburg等人,网络的承诺:增 强6。

通过网络安全弹性实现转型价值,德勤,2024年。

- 7 Gomeet Pant,一家大型工业产品公司印度分部的集 团安全技术副总裁,德勤采访,2024年10月25日。
- 8.凯瑟琳·诺伊斯, "NIST的后量子密码术" 标准:"这是比赛的开始",《华尔街日报首席
- 9.雅信泉官家壳盆,新兴技乐县呈显监, JP
- 摩根,德勤采访,2024年10月14日。 10.科林·苏塔、伊坦·巴梅斯和卡斯帕·斯塔普, "不要让司机 对于量子网络准备采取退居二线!德勤,2023。 11.Matt Scholl, NIST计算机安全部门主管, 德勤采访, 2024年9月3日。

- 12.Marc Manzano, SandboxAQ总经理, 德勤采访, 2024年 10月15日。 13.NIST,"NIST发布前三个最终确定的后量子加密标准。"
- 14.NIST, "什么是后量子密码术? , "8月13日, 2024.
- 15.苹果安全研究,"带有PQ3的iMessage:大规模量子安 全消息传递的最新技术水平",2024年2月21日。
- iMessage是Apple Inc.在美国和其他国家/地区注册的商 标。《技术趋势》是一份独立的出版物,未经苹果公司授
- 权、赞助或批准。 16.Chiara Castro, "Chrome将在桌面上采用NIST批准的后量 子加密", techradar, 2024年9月17日。
- 17.丹·古丁,"随着量子计算威胁的逼近,微软更新其核心加密 库", Ars Technica, 2024年9月12日; 保罗·史密斯-古德森, "IBM使用加密敏捷性为量子安全的未来做准备",《福布斯》
- 18.NIST, NCCoE宣布迁移到后量子密码术项目的技术。 合作者", 2004年7月15日, 2022.
- 19.Bill Newhouse, NCCoE PQC项目迁移负责人, 德勤访
- 谈,2024年10月16日。 20.Soutar等人,"不要让量子网络准备就绪的司机退 居二线!"
- 21.Michele Mosca,德勤evolutionQ创始人兼首席执行官 面试,2024年10月18日。

he area marks Solving cryptography in an age of anamian

继续对话

行业领导地位

饰 Colin Soutar 董事总经理,网络| csoutar@deloitte. com德勤LLP +1 571 447 3817

科林·苏塔博士是德勤会计师事务所的董事总经理 德勤美国和全球量子网络准备项目负责人LLP说。他是德 勤美国政府和公共服务(GPS)网络业务的成员,负责创新 、资产、生态系统和联盟。

在担任目前的职务之前,Soutar博士在加拿大的一家生物识别和身份管理上市公司担任了近10年的首席技术官。他的职业生涯始于美国国家航空航天局·约翰逊航天中心为期两年的博士后研究,为自主交会和捕获操作开发模式识别技术。他热衷于在复杂的风险和监管环境中推动新兴技术的新商机。他是2013年开发国家标准与技术研究所(NIST)网络安全框架团队的一员,随后帮助NIST开发了生物识别技术、身份、物联网和隐私的具体指导。

桑尼·阿齐兹 委托人|网络和战略风险服务| saziz@deloitte.com德勤 LLP+17139822877

桑尼·阿齐兹是德勤网络与战略风险部的负责人 在协助客户管理、实施和运营复杂的网络项目方面拥有超 过25年的经验。Aziz为客户提供网络战略和执行大型网络 转型计划方面的建议。Aziz还担任德勤金融服务行业保险 部门的网络主管,专门从事托管安全服务、网络战略和评 估、身份和访问管理、云和基础设施安全、IT风险和合规 管理、事件响应、威胁和漏洞管理、第三方风险管理以及 隐私和数据保护。

伊坦·巴恩斯博士 全球量子网络就绪能力领导|德勤NL+31(0)88 288 5589 | ibar mes @ Deloitte . NL

Itan Barnes在Deloitte NL的网络团队领导加密和量子安全能力,并担任全球量子网络准备能力领导。他的团队专注于密码管理的各个方面,如PKI、证书生命周期管理、密钥管理和量子风险。

感谢

非常感谢德勤对我们网络章节的研究做出贡献的众多学科带头人:斯科特·布赫霍尔茨、科林·苏塔和寺部正芳。

智能核心:人工智能改变核心现 代化的一切

多年来,核心和企业资源规划系统一直是企业记录系统的唯一真实来源。艾尔从根本 上挑战了这种模式。

凯利·拉斯科维奇,比尔·布里格斯,迈克·贝克特尔和艾德·伯恩斯

许多核心系统提供商都在人工智能上投入了全部 精力,并围绕人工智能优先的模式重建他们的产 品和能力。人工智能与核心企业系统的集成代表 着企业如何运营和利用技术获得竞争优势的重大 转变。

很难夸大人工智能对核心系统的变革性影响。多年来,核心和位于其上的企业资源规划工具是大多数企业的记录系统——事实的唯一来源。如果有人对运营的任何方面有疑问,从供应商到客户,core都有答案。

人工智能不仅仅是增加这个模型;这从根本上挑战了它。人工智能工具有能力进入核心系统,了解企业的运营,理解其流程,复制其业务逻辑,等等。这意味着用户不必直接去核心系统寻求操作问题的答案,而是可以使用他们最熟悉的任何人工智能工具。因此,这种转变不仅仅是自动化日常任务,而是从根本上重新思考和重新设计流程,使其更加智能、高效和可预测。它有可能通过用人工智能的力量以及来自整个企业的信息武装工人来释放新的商业方式。

毫无疑问,在此过程中将会面临集成和变更管理的挑战。IT团队需要投资于正确的技术和技能, 并构建 保护敏感数据的强大数据治理框架。人工智能与 核心系统集成得越多,架构就变得越复杂,这种 复杂性将需要管理。此外,团队将需要解决信任 问题,以帮助确保人工智能系统有效和负责任地 处理关键的核心操作。

但应对这些挑战可能会带来重大收获。 最终,我们希望人工智能能够超越新的记录系统 ,成为一系列代理,不仅可以进行分析和提出建 议,还可以采取行动。最终的终点是自主决策, 使企业能够比当前的运营速度更快地运营。

现在:企业需要更多的记录系 统

核心系统,尤其是企业资源规划(ERP)平台,越来越被视为企业的关键资产。人们清楚地认识到,让一个系统保存描述业务运营方式的所有信息的价值。

因此,从2023年到2030年,全球ERP市场预计将 以11%的速度增长。这种增长是由对更高的效率 和更多数据驱动的决策的渴望推动的。1

面临的挑战是,相对较少的组织意识到他们期望 从这些工具中获得的好处。不管 许多ERP项目没有意识到集中单一的事实来源是实现更高运营效率的关键。根据Gartner研究,到2027年,超过70%的最近实施的ERP计划将无法完全实现其最初的业务案例目标。2

ERP项目可能无法与业务目标保持一致的部分原因是,系统往往是一刀切的。企业需要反映他们的运作,以适应ERP系统的模型。整个组织的应用程序预计将与企业资源规划系统集成。这是一个记录系统,保存了所有的业务数据和业务逻辑,所以组织默认了这些需求,即使它们很难满足。然而,这在业务和ERP系统之间产生了一定程度的脱节。

AI正在打破这种模式。一些企业正在寻求减少对整体ERP实施的依赖,人工智能很可能成为一种工具,通过开放数据集和启用新的工作方式来实现这一点。

新:铝增加了核心

随着一些发展,企业资源规划系统可能会保持其目前作为记录系统的地位。在大多数大型企业中,他们仍然掌握着几乎所有的业务数据,而那些在过去几年中实施了ERP系统的组织可能不愿意继续使用这些系统。

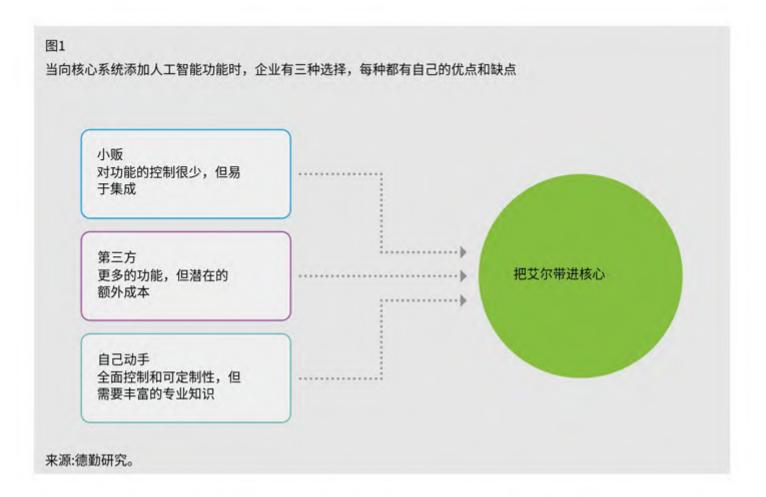
协调平台方法

在这种模式下,今天的核心系统成为人工智能创新的基础平台。然而,这种前景提出了围绕人工智能编排的多个问题,IT和业务领导者必须回答这些问题。他们是使用供应商提供的模块,还是使用第三方工具,或者,在技术能力更强的团队中,开发他们自己的模型?依赖供应商意味着等一待功能,但可能带来更大的容易集成的保证。

另一个问题是要暴露多少数据给AI。 生成式人工智能的好处之一是它能够跨不同系统 和文件类型读取和解释数据。 这就是新的学习和自动化的机会所在,但它也可能带来隐私和安全挑战。就核心系统而言,我们谈论的是高度敏感的人力资源、财务、供应商和客户信息。将这些数据输入人工智能模型而不关注治理可能会产生新的风险。

还有一个问题是谁应该拥有将人工智能带到核心的主动权。这是一个技术性很强的流程,需要 IT人员的技能,但它也支持关键的运营功能,业 务部门应该能够在这些功能上留下自己的印记。

这些问题的答案可能会因用例而异,甚至因企业 而异。但是团队应该在把全部精力放在核心的人 工智能上之前思考这些问题并找到明确的答案。 这些答案构成了该技术更大优势的基础。


SAP云ERP和行业首席营销官埃里克·范·罗森(Eric van Rossum)表示: "为了充分利用人工智能,公司应该制定一个基于业务目标的明确战略。"人工智能不应被视为一项独立的功能,而应被视为所有业务流程中不可或缺的嵌入式功能,以支持公司的数字化转型。"3

人工智能创造了新的工作方式

有远见的企业已经在回答这些编排问题。 Graybar是一家电气、工业和数据通信解决方案 的批发分销商,该公司正在对一个已有20年历史 的核心系统实施进行现代化改造,该过程从升级 其人力资源管理工具开始,现在正转向ERP现代 化。

在合理的情况下,它依靠其核心系统供应商提供 的最佳模块,同时在有机会使其产品和服务与众 不同时,也依靠第三方集成和自主开发的工具。4

人工智能的发展为该公司的领导者提供了一个机会,不仅可以升级其技术堆栈,还可以思考如何 重塑流程,以推动新的效率和收入增长。信任是 现代化努力的关键部分。该公司正在狭窄的定制 用例中推出人工智能,工具

根据完成指定任务的需要,只能访问特定的数据 库。在每一个例子中,人类都被保持在循环中, 以帮助确保来自人工智能工具的信息在到达客户 之前的准确性。

Graybar正在销售和客户服务领域试行人工智能,并 计划扩展到库存预测和规划。

它正在将人工智能添加到订购系统中,以帮助 surface向销售代理交叉销售和追加销售创意。它 还在开发一种基于人工智能的工具,帮助代理商 为客户建立报价。该工具将允许工作人员使用自 然语言来查询产品目录,为客户汇集选项,并将 信息编辑成给客户的通信。

"这些任务过去需要几个小时或几天才能完成; 现在只需要几分钟,"Graybar的首席财务官大 卫·迈耶说。"借助基于人工智能的工具, 员工现在可以将时间集中在销售和业务发展上, 而不是花半天时间查找信息和键入对客户请求的 回复。" s

这一变化不仅仅是为面向客户的员工腾出一些时间 。Graybar领导层正着眼于通过在核心系统中扩大 人工智能的使用来实现数十亿美元的新收入增长。 人工智能的核心是通过启用新的工作方式来推动增 长。

软件公司ServiceNow的高级副总裁兼人工智能走向市场全球负责人迈克尔·帕克(Michael Park)表示,ServiceNow的许多客户都看到了这种趋势。他看到的一个特别有影响力的用例是新员工入职。每位新员工都需要访问人力资源系统以及特定于其职位的工具和数据。在过去,工作人员必须与一系列帮助台工作人员联系,检索密码,登录不同的系统,并组装

他们开始工作所需的证书。现在,人工智能使人力 资源系统能够更快地了解新员工的需求,并在开始 日期前自动提供访问权限。 但越来越多的工作正在跨领域进行,人工智能是结缔组织。这意味着许多主要的效率提升将来自核心 之外的业务流程创新。

Park说,这种自动学习方法可以应用于各种业务流程。通过gen AI功能(如摘要、笔记生成、对话聊天、AI搜索和任务自动化)自动化这些任务可能会节省两分钟或两天时间,具体取决于用例。一旦他们将简单的工作负载转移给机器人,企业就可以将员工重新部署到更有价值的任务上,如提高服务水平、推动利润增长或开发新产品,这是ServiceNow在其客户身上看到的趋势。

"内置于记录系统中的人工智能技术将会对现有的 工作方式产生不错的改善,"贝迪说。"但对于这 种阶跃函数变化,它必须来自跨领域工作的人工智 能,利用不只是驻留在一个记录系统中的数据,可 以查看所有数据,在所有数据上运行模型,在所有 数据上采取行动。这才是真正的解锁。"8

"核心系统中的人工智能仅仅是一种新的能力,一种可以使用的工具,"Park说。"更大的战略需要是使用这些新能力来重新定义指数级价值创造的现状,而不是仅仅将现有流程引入新的技术能力。"6

下一步:更多的自动化创造了机会,也 带来了潜在的风险

对许多企业来说,核心现代化是一项持续多年的任 务。他们可能会倾向于将人工智能视为他们已经熟 悉的事物的最新外观。这可能不是正确的心态。

核心的铝, 以及超越

随着企业中越来越多的软件工具嵌入人工智能,传统上由核心系统拥有的工作负载最终可能会完全离开核心。有了人工智能,业务逻辑不需要驻留在核心中。AI可以对整个企业的结构化和非结构化数据进行训练。组织的商业数据将有助于从人工智能模型中开发最准确和最有洞察力的输出。

这种现代化可能会与过去的几轮非常不同。变化的 速度和规模可能会比以前的努力更快、更大。在过 去,现代化主要是实施升级,这是一项既费力又耗 时的任务,但却是一项很好理解的任务。软件供应 商通常会提供一个升级路径,让他们的用户有一个 剧本可以遵循。

利用核心来帮助协调这些数据和后续的人工智能模型,将为公司提供一个在真正的洞察力驱动的行动 上运行业务的机会。

在这个模型中,核心变成了另一个训练数据的仓库 ,AI可以用它来学习和改进业务流程管理。这才是 核心中AI的真正威力所在。

ServiceNow的首席客户官克里斯·贝迪表示,每个技术提供商都知道现在需要将人工智能融入其产品中。7 ERP系统将继续作为企业的记录系统发挥作用,提供交易控制和可靠性作为事实的来源。

这一次,没有预先写好的剧本。架构可能会有所不同,因为很多都将涉及与核心系统交互的外围软件中的人工智能模块。现在,核心必须与企业正在做的事情保持一致,而不是企业将它所做的一切与核心保持一致。当企业利用人工智能来创建由核机。当企业利用人工智能来创建由有挑战性。这项工作变得更加复杂,需要更多的专业知识和不同的技能。类似于我们在"it,放大:人工智能是升了技术功能的范围"中讨论的内容,理解业务问题将成为将人工智能添加到核心系统的IT团队的关键技能。对于IT工作者来说,这可能是一个重大的变化,过去,他们的职业发展是基于深厚的技术专业知识。

一旦核心系统通过人工智能实现现代化,维护它们 就变成了一项非常不同的工作。正如《AI的下一步 是什么? 人工智能代理可以很快执行 很多核心功能。想象一下, 一个客户服务机器人 可以与客户互动,了解他们的问题,并诊断问题 。然后,这个机器人可能能够与另一个机器人进 行交互,后者可以采取处理退货或运送新物品等 行动。领先的公司已经开始这样做了。例如,奢

侈品零售商Saks的客户服务机器人可以与订购和 库存系统进行交互,以顺利交付在线购买的商品 ,简化退货,并增强客户服务代表的能力。9在真 正代理的未来,我们希望看到更多这类机器人能 够在各种系统中自主工作。然后,维护核心系统 就变成了监督一队人工智能代理。

明智的做法是,人工智能可能有助于减少核心系统 的技术债务,并推动更清洁的核心,这可能使企业 系统变得不那么复杂,以更敏捷的方式维护和满足 业务需求。

核心正处于一场由人工智能驱动的重大革命的风口浪尖。 早期采用者正乘着这股浪潮的第一波浪潮,以提 高效率和新的创收方式,但很快企业可能会将更 大的核心功能移交给自主代理。这一变化带来的 效率和效力的提高,将会给各组织带来什么影响 ,还有待观察。但机会不仅在于重塑核心的运作 方式,还在于从更根本的层面上重塑业务的运作 方式。

尾注

大观研究,ERP软件市场规模,份额增长报告,2030年,访问于 2024年11月5日。Gartner,"优化运营的企业资源规划",2。 2024年11月5日进入。

3.SAP云ERP和行业首席营销官Eric van Rossum,对作者的采访,2024年10月1日。Graybar首席财务官David Meyer,2024年9月26日对作者的采访。

5.同上。

 人工智能go-tomarket, ServiceNow的高级副总裁兼全球负责人 迈克尔·帕克(Michael Park),对作者的采访,2010年9月19日, 2024

7.克里斯·贝迪,ServiceNow首席客户官,2024年9月29日采访作者。

8.同上。

9.Salesforce,"萨克斯通过统一数据和人工智能服务代理提升 奢侈品购物",11月5日访问3ua wauav

e intelligent core: At changes merything for core modernitation

继续对话

行业领导地位

饰 Thorsten Bernecker 应用现代化和迁移实践负责人|负责人| LLP德勤咨询公司 ' +1 512 226 4418 | tbernecker@deloitte.com

Thorsten Bernecker是LLP德勤咨询公司的负责人,负责应用现代化和创新产品中的应用现代化和迁移业务。他创建了软件公司innoWake,并将其从一家小企业发展成为传统技术现代化的全球领导者,他能够将对颠覆性技术的敏锐眼光与成功带领小型创业公司经历指数增长阶段的商业意识结合起来。德勤于2017年收购了innoWake,Bernecker现在负责该集团的全球战略和领导力。

漆拉·奥斯丁 技术战略和业务转型|委托人| LLP德勤咨询公司

+1 202 716 5974 | ziaustin@deloitte.com

漆拉·奧斯汀是德勤咨询公司技术战略和业务转型实践部门的负责人。她拥有20多年的行业和咨询经验,领导和管理业务转型,为全球能源、资源和工业客户提供大规模技术解决方案。奥斯汀为能源和资源客户制定并实施IT战略,帮助大公司实施业务和IT战略,同时提高其技术流程的效率。她在将IT战略与架构、治理、项目管理、运营模式和服务管理相结合方面拥有深厚的专业知识。

阿卜迪·古达齐 美国企业绩效组合领导者|委托人|德勤 咨询LLP +1 714 913 1091 | agoodarzi@deloitte.com

Abdi Goodarzi是LLP德勤咨询公司的负责人,负责德勤的企业绩效(EP)产品组合。这六个产品组合为各种企业功能提供战略、实施和运营服务,包括端到端业务和IT转型、数字供应链优化、制造和产品战略、采购即服务、全球金融、共享服务、规划、ITSM以及全面的AMS和BPO。除了ServiceNow、Anaplan、Ariba和Coupa之外,该产品组合还提供SAP、Oracle、Workday Financials和Infor等许多ERP平台的能力。此外还有Nuvolo等房地产解决方案,以及西门子、PTC、O9、OMP和IBP等PLM、规划和实施以及工程解决方案。

感谢

非常感谢德勤的众多学科带头人,他们为我们的核心现代化章节的研究做出了贡献:漆拉·奥斯丁、托尔斯滕·伯内克、拉斯·克罗姆利、蒂姆·高斯、阿卜迪·古达齐、凯利·希律、奇普·克莱因赫塞尔、凯西·洛博和金磊·路易斯。

广度是新的深度:有意交集的力量

在一个日益融合的世界里,企业应该努力探索推动跨界创新的有意的行业和技术交汇点

迈克·贝克特尔和拉奎尔·布斯凯诺

在咨询中,我们经常依赖于MECE问题解决框架,该 和技术融合。这种融合有助于揭示两个关键观点: 框架提出,如果一个问题可以被分解为不同的"互 斥"(ME)任务, 当这些任务加在一起时, 可以提供 "集体穷举",那么这个问题就可以更容易地解决

(CE)解决方案。

然而, 我们越来越生活在一个趋同的世界里, MECE原则并不总是容易适用。

这在这份报告的六个章节中显而易见。尽管我们已 经将六种趋势整齐地打包成不同的章节, 但它们远 非独立和孤立的。就此而言,当今的技术、组织和 行业——以及世界其他大部分地区——也是如此。

分离、细分和专业化正日益被复杂的交叉网络所 取代,这是一种在行业和技术领域都能找到的" 不寻常嫌疑人"的聚合。考虑区块链和生殖人工 智能的融合, 以更好地检测和保护合成媒体; 或 空间技术和生物技术,保护宇航员免受长期太空 旅行的影响。

公司长期以来依赖创新驱动的收入流、通过并购 创造的协同效应以及战略业务伙伴关系来推动新 的增长。他们比以往任何时候都应该加倍努力, 有意识地、专注地追求广度。广度的商业案例表 明,最有前途(也最有利可图)的未来可能来自工业

1.洞察相邻行业,其当前的研究和开发工作可能 对组织的未来至关重要

不同技术之间的差异。 结合起来,使总和大于其各自的部分:协同作 用,如果你愿意的话——一个概念,它本身已 经经历了炒作周期,并完好无损地出现

让我们更深入地了解其中的每一项。

行业交叉:超越行业界限的探索

赛博朋克科幻作家威廉·吉布森经常被人引用一句 名言: "未来已经到来; 只是分布不均匀。" 一

过度使用?是的。比以往任何时候都重要?也是的。 Gibson的陈述可以帮助领导者看到他们组织的下 一个重大突破可能存在于另一个行业、地域或竞 争对手中。

让我们看看航天和生命科学行业。 有人可能会说这两者之间的协同作用微乎其微, 但我们可以用下面的例子来反驳:

空间微重力的独特性质使得药品投入的开发更加一 致,生产质量更高。

尽管在微重力环境下制造的想法似乎有些异想天开 ,但它远非理论上的:像礼来公司和默克这样的公司 已经在投资这种可能性。3忽视太空行业作为相关合 作伙伴的生物制药公司可能会错过一个可能直接影 响其核心业务的潜在发现。

行业融合的许多其他例子重申了在自己的行业之外 寻找创新解决方案和答案的重要性。汽车巨头丰田 和三菱重工正在与太空机构合作建造月球车,4而服 装零售商lululemon正在与生物技术公司如 LanzaTech和Samsara Eco合作开发更可持续的面 料。5同时,食品配送现在占运输公司优步总收入的 三分之一,6电子商务领导者亚马逊通过亚马逊药房 在医疗保健领域取得了重大进展。7

技术交叉:复合增长和整合

虽然行业交叉可以作为广角镜头来搜索邻近的行业 以获得洞察力,但技术交叉提供了一个稍微不同的 视角。它们帮助我们更好地理解技术和创新如何促 进增长。

技术是工具,通常用于解决特定的问题。但是锤子和手提钻的区别在于手提钻是几种工具(锤子、凿子和能源)的组合,它们共同创造了一种更有效的工具。不要孤立地看待各种技术,重要的是要将它们紧密地结合在一起,并能够促进彼此的发展。

例如,量子机器学习将量子计算原理应用于机器学习程序,以提高效率。5G网络和边缘计算等网络技术紧密结合,以至于它们经常被归为一个简单的名称,

5G边缘。正如我们在"硬件正在吞噬世界"中所讨论的,智能工厂正在结合计算机视觉、传感器和数据来制造能够学习和改进的机器,这有可能导致人形机器人的发展。8

那么人工智能这个当下的工具呢?我们在介绍中讨论了对人工智能最终将变得像电力一样普遍和基础的期望,这表明它将与各种下游技术有无尽的汇合点。仅举一个例子,让我们探索人工智能和机器人技术的交集。虽然这两种技术可以被清楚地看到,但真正的奇迹发生在它们结合的时候——当机械思维遇到机械肌肉的时候。人工智能使机器人能够自主操作,允许机器人收集更多关于世界及其运动的数据,这些数据反过来被输入到人工智能算法术视为数据中,从而改进算法本身。当我们将技术视为本质上的交叉时,我们可以开始看到飞轮效应促进了增长和创新。

这对商业和技术领导者意味着什么?虽然拥有专注 于单点技术的"互斥"技术团队在功能上是高效的 ,但在团队之间建立桥梁也是必要的。选择稍微改 进的锤子而不是手提钻,是为了渐进主义的暴政而 放弃创新。

文艺复兴再现

"文艺复兴时期的人"一词体现了一种理想,即在 科学、艺术和商业快速变化的时代,那些在几个知 识领域积累了专业知识的人准备好了去领导。在当 今世界,不断加速的行业和技术交叉肯定了广度是 新的深度。通才比以往任何时候都更需要。随着可 用信息量接近无穷大,对跨学科点连接器的需求也 在增加,跨学科点连接器是指能够识别看似不相关 的行业、技术和其他想法之间的相关性和联系的宏 观思想家。

正如我们提到的,如果人工智能变得像电一样无处 不在,那么二阶和三阶效应可能会非常深远。电的 出现对人类产生了巨大的影响 信。9通过改变我们工作、生活和交流方式的 人工智能,我们可能正处于类似变化的尖端。 历史方法方面的专业知识可能没有想象和执行 人工智能与我们在本报告中涵盖的宏观技术力 空间计算和核心现代化。

社会的变化,如城市移民、工业化和无线电通 对于领导者来说,这有助于他们将双学位的奇 数组合、不同团队之间的桥梁以及对相邻行业 的兴趣视为必要特征,而非缺陷。如果组织能 够超越专业化的藩篱, 拥抱这些有意的交集, 我们很可能会发现自己处在一个重新想象的文 量的新交叉的愿景重要,例如人工智能应用于 艺复兴的尖端。您的组织下一步会发现什么聚 合?

the wew depth: The powerO intentional intersections 五十 托的

尾注

- 《经济学人》,"宽带蓝调",2001年6月21日。
 2.公理太空,"蛋白质结晶",2024年10月获得。 3.同上。
- 9.川崎夏美,"丰田、三菱重工合作开发月球车",《日经亚 洲》, 2023年7月21日。生物。新闻, "Lanza Tech x Lululemon collab诞生新的可持续时尚项目", 2024年4月 24日; lululemon, "lululemon和Samsara Eco推出世界上 第一款酶回收尼龙6,6产品",新闻稿,2024年2月20日。 Arjun,"优步如何创造收入:关键流和战略解释", Appscrip, 2024年9月19日。
- 7. 布鲁斯·贾普森, "亚马逊在人工智能的帮助下推出当天处方配送" 《福布斯》,2024年3月26日。
- 8. Majeed Ahmad, "传感器与人工智能的融合改变了智能制造
- 时代",EE Times,2023年7月26日。 9. 史密森学会,"点燃一场革命",2024年10月访 间。

关于作者

凯利·拉斯科维奇 kraskovich@deloitte.com

Kelly Raskovich是德勤的高级经理和主管 首席技术官办公室(OCTO),并担任德勤关于新兴技术的旗 舰报告《技术趋势》的执行主编。

她的使命是教育客户,塑造德勤技术品牌和产品的未来,培养人才,并使企业实现未来的增长。她负责技术卓越、客户参与和营销/公关工作。在担任领导职务之前,她曾为石油和天然气行业的全球财富500强企业领导过多个数据和分析项目。

比尔·布里格斯 wbriggs@deloitte.com

作为首席技术官,Bill Briggs帮助客户预测新兴技术在未来 可能对他们的业务产生的影响,以及如何从当今的现实中实 现这一点。他负责影响客户业务的新兴技术的研究、推广和 孵化,并塑造德勤咨询LLP公司技术相关服务和产品的未来

Briggs还担任德勤首席信息官项目的执行发起人,为首席信息官和其他技术高管提供见解和经验,以应对他们在业务和技术领域面临的复杂挑战。

Briggs在圣母大学获得了计算机工程学士学位,在西北大学 凯洛格管理学院获得了工商管理硕士学位。他自豪地在贫困 儿童基金会的董事会任职,与资源不足的学校的教师和学生 合作,为教师的教学和学生的学习提供所需的支持。 迈克·贝克特尔 mibechtel@deloitte.com

作为LLP德勤咨询公司的首席未来学家,Mike Bechtel帮助客户制定战略,以应对不连续性和破坏性。他的团队研究最有可能影响商业未来的新型指数技术,并与初创公司、现有公司和创造这些技术的学术机构建立关系。

在加入德勤之前,柏克德曾领导过早期风险投资公司Ringleader Ventures,这是他在2013年共同创立的。在加入"流氓头子"之前,他是Start Early的首席技术官,Start Early是一家全国性非营利组织,致力于为高危青少年提供早期儿童教育。

Bechtel在一家全球专业服务公司开始了他的技术研发职业 生涯,在那里,他的十几项美国专利帮助他被任命为该公司 的全球创新总监。他目前在圣母大学担任企业创新教授。 艾德·伯恩斯 edburns@deloitte.com

埃德·伯恩斯领导着

首席技术官被称为趋势线。这个项目是对技术趋势和其他领域 的重要研究投入。在担任目前的职务之前,他领导了一份技术 新闻出版物,涵盖了人工智能、分析和数据管理的所有内容。

阿比吉斯·拉维努塔拉 aravinutala@deloitte.com

Abhijith Ravinutala是德勤公司的一名专业说书人首席技术官办公室。通过研究、写作和演示,他帮助德勤及其客户展望并更好地为技术的未来做准备。他在战略咨询方面的背景使他接触了各种行业,作为一名作家,他对技术伦理、人工智能和人类影响的交叉产生了浓厚的兴趣。除了撰写技术趋势,他还领导了德勤关于人工智能和首席执行官的出版物,xTech Futures: BioTech和最近在SXSW 2024上推出的二分法系列。

拉克尔·布斯卡诺 rbuscaino@deloitte.com

Raquel Buscaino领导着德勤的Novel & Exponential Technologies(NExT)团队,在该团队中,她和她的团队感受并理解了可能改变我们工作和生活方式的新兴技术。从脑机接口和合成生物学到空间探索和量子计算,Buscaino和她的团队旨在从噪音中提取信号,从炒作中提取价值,从模糊的概念中提取可获利的行动。下一个团队利用这项研究创造世界级的思想领袖,如德勤科技趋势和xTech期货出版物

布斯凯诺还是德勤TECHTalks播客的主持人,她在播客中采访了行业领袖,探讨了技术领域的新发展和未来。 在领导德勤的NExT团队之前,她在德勤的区块链和数字资产业务部门工作,专门研究区块链财团,并为德勤及其客户领导全球区块链研讨会。

感谢

特别感谢

Ed Burns、Heidi Morrow和Abhijith Ravinutala是推动技术趋势的创新引擎。Ed和Abhi,你们非凡的奉献精神、领导能力和编辑能力确实提升了我们的工作,更不用说你们将研究和采访巧妙地融入令人信服的叙述的能力,以及你们在管理来自多个利益相关方的反馈方面的灵活性。Heidi,感谢你成为优秀设计原则的旗手,同时热情拥抱引领技术趋势设计部分的新方法。漂亮的报告图像、数字、视频和其他图表证明了您的领导能力。我们很幸运也很感激你们三个是这个团队的一员。

莎拉·莫蒂尔达,让你一头扎进管理技术趋势产品的新角色,并让它成为你的。看到你们发现挑战、提出改进建议,并最终让我们比以往任何时候都更早地交付社论,你们的信心与日俱增,这是一件令人激动的事情。我们感谢你是一个渴望和热情的学习者,我们迫不及待地想看到你将如何在第二年"惊艳"我们。

卡罗琳·布朗(Caroline Brown),她领导着《技术趋势》编辑和设计制作团队,在压力下保持乐观、幽默和优雅。 您的领导力和战略眼光在引领技术发展趋势方面发挥了重要作用,我们非常感谢您。

伊梅尔达·门多萨和贝拉通过提供研究、数据和项目管理办公室的支持,呼吸到了你带给技术趋势进程的新鲜空气。 我们感谢你热情、愉快地愿意解决你遇到的任何问题。

MacKenzie Hackathorn、Haley Gove Lamb、Kiran Makhijani和Angel Lacambra,感谢你们为我们的客户和客户团队带来技术趋势。感谢您接受我们的工作并使之成为现实。

恒斯蒂芬妮感谢您一直以来愿意介入并帮助我们弄清楚技术趋势和出版过程。我们感谢您对我们团队的承诺,即使您 已经过渡到一个新的角色,我们也期待看到您将飞向下一个高度。我们会比你想象的更想念你!

Deanna Gorecki,我是hebbe,Bri Henley,Tracey Parry,Abria Perry,madelyn scott,和mikaeli robinson,为你在推广科技趋势方面的奉献和创新战略。你在市场营销、通讯和公关方面的不懈追求,年复一年地大大增强了我们的理性和影响力。感谢您在技术趋势的价值和影响方面的认知和启示。

Taylor Brockman、Raquel Buscaino、Lucas Erb、Danny Greene、Mark Osis和Hillary Umphrey在我们确定趋势时充当了我们的智囊团,并进行初步研究,为我们指明了长期方向。感谢您慷慨地与我们分享您的知识,并帮助我们磨练我们的研究工艺。

Hannah Bachman、Aditi Rao和整个Deloitte Insights团队发展了我们的合作关系,并在我们继续寻找改善技术趋势的方法时与我们一起成长。当我们的团队和我们的实践需要改变时,我们感谢你持续的支持、灵活性和仁慈。

张艾嘉、Manya Kuzemchenko、Melissa O'Brien、Molly Piersol、Natalie普法夫、Harry Wedel、Jaime Austin、Govindh Raj、Megha Priya、Naveen Bhusare以及所有帮助开发报告图像和数据的营销卓越创意团队成员。您的创造力和奉献精神造就了一份超出所有预期的精美报告和中心页面。我们不仅感谢您赋予我们工作生命的艺术眼光和迷人的视觉效果,也感谢您致力于合作和探索。

额外感谢

作者要感谢首席技术官做市团队办公室,没有他们,本报告就不可能完成:Caroline Brown、Ed Burns、MacKenzie Hackathorn、Heng、Bri Henley、Dana Kublin、Angel Lacambra、Haley Gove Lamb、Kiran Makhijani、Sangeet Mohanty、Heidi Morrow、Sarah Mortier、Abria Perry、Abhijith Ravinutala和Bella Stash。

继续对话

我们的见解可以帮助您利用新兴趋势。如果你正在寻找新的想法来解决你的挑战,让我们来谈谈。 首席技术官办公室

德勤美国首席技术官办公室是一个以工程技术未来为中心的团队。我们识别、研究和培育新兴技术解决方案,以塑造未来 市场的需求,培养人才,并使企业能够实现未来增长。

如果你想连接和讨论更多,请随时联系我们在OCTO@deloitte.com。

执行编辑

凯利·拉斯科维奇 kraskovich@deloitte.com LLP德 勤咨询公司首席技术官办公室客户 和营销主管

Kelly Raskovich是德勤首席技术官办公室(OCTO)的高级经理和主管,并担任德勤关于新兴技术的旗舰报告《技术趋势》的执行主编。她的使命是教育客户,塑造德勤技术品牌和产品的未来,培养人才,并使企业实现未来的增长。

她负责技术卓越、客户参与和营销/公关工作。在担任领导职务之前,她曾为石油和天然气行业的全球财富500强企业领导过多个数据和分析项目。

执行发起人

比尔·布里格斯 wbriggs@deloitte.com LLP德勤咨询公司全球首 席技术官

作为首席技术官,Bill Briggs帮助客户预测新兴技术在未来可能对他们的业务产生的影响,以及如何从今天的现实中实现这一点。他负责影响客户业务的新兴技术的研究、推广和孵化,并塑造德勤咨询LLP公司技术相关服务和产品的未来。Briggs还担任德勤首席信息官项目的执行发起人,为首席信息官和其他技术高管提供见解和经验,以应对他们在业务和技术领域面临的复杂挑战。

Bill拥有圣母大学的计算机工程学士学位,以及西北大学凯洛格管理学院的工商管理硕士学位。他自豪地在贫困儿童基金会的董事会任职,与资源不足的学校的教师和学生合作,为教师的教学和学生的学习提供所需的支持。

迈克·贝克特尔 首席未来学家 mibechtel@deloitte. com LLP德勒咨询公司

作为LLP德勤咨询公司的首席未来学家,Mike Bechtel帮助客户制定战略,以应对不连续性和破坏性。他的团队研究最有可能影响商业未来的新型指数技术,并与初创公司、现有公司和创造这些技术的学术机构建立关系。

在加入德勤之前,Bechtel领导了一家早期风险投资公司Ringleader Ventures,这是他在2013年共同创立的。在加入"流氓头子"之前,他是Start Early的首席技术官,Start Early是一家专注于高危青少年早期儿童教育的全国性非营利组织。Bechtel在一家全球专业服务公司开始了他的技术研发职业生涯,在那里,他的十几项美国专利帮助他被任命为该公司的全球创新总监。他目前在圣母大学担任企业创新教授。